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The Capacity Region of a Channel 
with s Senders and r Receivers 
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Wichita State University, Wichita, Kansas 

T h e  s t udy  of mu l t i -way  channels  was init iated by S h a n n o n  in his basic 
paper  " T w o - w a y  c o m m u n i c a t i o n  channe l s"  (Shannon ,  1961). Ahlswede  (1971b) 
has  defined and  classified mu l t i -way  channels  of  var ious  kinds  and  proved  
s imple  character izat ions for the  capacity regions o f  channels  wi th  (a) two 
senders  and  one receiver, and  (b) three  senders  and  one receiver. 

Subsequen t ly ,  Ahlswede  (1974) f ound  a new approach  to the  coding p rob lem 
for a channe l  wi th  two senders  and  one receiver which  led to an  alternative 
character izat ion of  the  capaci ty region of  this  channel .  T h i s  approach  seems  
to be  m o r e  canonical  t han  the  earlier one, and  was used  successful ly  in deter-  
m i n i n g  the  capacity region of  a channel  wi th  two senders  and  two receivers 
in case bo th  senders  send  m e s s a g e s  s imul taneous ly  to bo th  receivers (Ahlswede,  
1974). In  the  earlier paper ,  Ahlswede  conjec tured  tha t  the  resul ts  of  tha t  paper  
would  ho ld  for any  channe l  wi th  s >~ 2 senders  and  one receiver. A conjecture 
of  the  later  paper  was tha t  i ts resul ts  would  hold  for any  channel  wi th  s ~> 2 
senders  and  r ~> 1 receivers in case all senders  send  i ndependen t  messages  
s imul taneous ly  to all receivers. 

In  this  paper ,  we have proved  the lat ter  conjecture to be true.  T h e  charac-  
ter izat ion we get  for the  special case s = 3 and  r = 1 is different f rom tha t  of  
Ah l swede ' s  (1971b) earlier paper .  All o f  our  resul ts  are obtained u n d e r  the  
a s s u m p t i o n  of  i ndependen t  sources.  

1. THE CHANNEL MODEL AND STATEMENT OF THE CODING PROBLEM 

In  this paper, a noisy, discrete, stationary, memoryless channel with s > / 2  
senders and r ~> 1 receivers is studied. 

Let  X1,2(2  ,..., Xs and Y1, Y2 .... , Y~ be finite sets; X 1 ..... X ,  denote the 
input alphabets and Y1 ,..., Yr the output alphabets of the channel to be 
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descr ibed.  F o r  every t = 1, 2,..., let  X e  ~ = X e and Y~* = Yj for  all k = 1,..., s 
a n d j  = 1,..., r. L e t  n be  a posi t ive integer  and  define 

Xe(n) = [-I XJ and Y~(n)= ~[ Y? for all k = 1, . . . ,s  
~=1 ~=1 

and  j =  1 , . . . , r .  

F o r  each k = 1,..., s, Xe(n)  is the  set of  words  of  length  n wi th  let ters  
f rom the a lphabe t  X e  which  can be  sent  over  the  channel ;  s imilarly,  for  each 
j = 1 , . ,  r, Y~(n) is the  set of  words  of  length  n w i th  let ters  f rom the  a lphabe t  
Y~ which  can be  received over  the  channel .  F u r t h e r  define 

. ~ = _ ; ~ : I ~ X e  ~ and I Y ~ = ~ : I ~ Y ~  ~ foral l  t - = l  ..... n. 
e = l  5 =1  

I f  M is an n × s matr ix ,  let  M e  t be the  e lement  in the  t - th  row and k - th  
co lumn of  M ,  M t be the  t - th  row of M ,  and Mk the  k - th  co lumn  of  M for all 
t = 1,..., n and 'k = 1,..., s. Simi lar ly  define 19I~ .*, M * and M j  for an n × r 
ma t r ix  M for all t = 1 ..... n and  j = 1,..., r, T h e n  let  

d /  = {M: M is an n × s m a t r i x a n d M  e ~ X e ( n )  f o r a l l k =  1 .... ,s} 

and 

= {M: M is an n × r ma t r ix  and M s a Yj(n) for  a l l j  = 1,..., r}. 

I f  x~(n) e XT~(n) for all k = 1 ..... s, b y  M = (xl(n) ..... x~(n)) we shall  mean  

the mat r ix  M a J / / w i t h  M e  = xk(n) for k = 1 .... , s. 
T h e  co lumn M e  (k = 1,..., s) of an M E d/d represents  a word  of  length  n 

sent  across the  channel  b y  the  k - th  sender .  T h e  row M t (t = 1,..., n) of  an 
M e ~ represents  an s - tuple  of let ters ,  one le t ter  f rom each sender ,  sent  

across the  channel  at  ins tant  t. Similar ly ,  the  co lumn M j  ( j  = 1,.,., r )  of an 
M ~ d/¢ represents  a word  of length  n received by  the j - t h  receiver,  whi le  the  
row M t (t = 1 ..... n) represents  an r - tup le  of  letters,  one le t ter  in t ended  
for  each receiver,  received over  the  channel  at  ins tant  t. 

L e t  ¢o('1 ") be  a non-nega t ive  funct ion def ined on 3~ × I~ such tha t  
~2~sf co(¢ I N) = 1 for all ~ ~ 2 .  T h e n  the channel  t ransmiss ion  probabi l i t i es  

are given b y  

p n ( M ] M ) = f l w ( M t l M  ~) f o r a l l  M e ~ /  and  l ~ I e d / ¢ .  (1.1) 
t = l  
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T h e  probability that the r words M s ,..., Mr  are received, given that the s 
words M s ..... Ms are sent, is given by P~(rVI [ M).  The  channel with s senders 
and r receivers is then completely described by the input alphabets X 1 ,..., X s ,  
the output alphabets Y1 ,..., Y~, and the channel probability function 

o4" I -). 
As to how this channel is actually used, we assume throughout this paper 

that all of the s senders send independent messages simultaneously to all of 
the r receivers. In  keeping with the notation of Ahlswede (1971b), this 
communication situation is denoted by (P, Tsr), where the P refers to the 
transmission probabilities defined in (1.1). 

A code concept appropriate to the communication situation (P, Ts~ ) is now 
8 

introduced. Let  Ns,.. . ,  Ns be positive integers and define N = I-Ie=s NT~, 
N = (N1,..., Ns) and _f = {(/1 ,..., is) I ie is an integer and 1 <~ i~ <~ N~ for 
k = 1,..., s}. 

A code - -  (n,/V) for (P, Tsr) is a system {(M(i), Aj(0): i ~ ] ,  j = 1,..., r} 
such that 

(i) M(g) ~ ./g for all i ~ ] 

(ii) There  exists a collection 

C = {MT~(i~): M~(ie) ~ XT~(n ) for all i~ = 1,..., Ne and 

k = 1 .... , s} such that M~(i) = Me(i~) for all (1.2) 

i = (/1,..., is) ~ i and k = 1,..., s 

(iii) A~(Q C Yj(n) for all f a ] ,  j = 1,..., r 

(iv) Aj(i) n Aj(i ')  = ¢ whenever i ¢ i ' ,  for all j = 1,..., r. 

For each j = i,..., r, define P~J(" [ ") on ~ X Y~(n) by Pj(yj(n)  IM)  = 
E~%(~) )  P~(M [ M), where J//l(yj(n)) = {l~I: M E ~¢/and Mj = y~(n)}. Then  
if h is a real number  with 0 < A < 1, a code --(n, N, h) is a code --(n, N)  
such that  

1 ~ ~ p j(A~(~)~]M(i)) < ~, (1.3) 
N ~ r j=l 

where A~-(i) e denotes the complement of Aj( 0. 
An s-tuple (R 1 ..... R~) of real numbers  is called a s-tuple of achievable rates 

for (P, Ts~ ) if for all e > 0 and 0 ~ A ~ 1, and for all n sufficiently large, 
there is a code --(n,N,  h) for (P, T~) such that ( l / n ) l o g N e  ) R e -  e for 
all k = 1,..., s. 

T h e  set of all s-tuples of achievable rates is denoted by G(P, Tsr). Following 
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the terminology of Shannon (196i), G(P, T,~) is called the capacity 
region. 

T h e  problem then is to find a simple ("single letter") characterization for 
G(P, T**) in case s >~ 2, r ~> 1. In  Section 3 we obtain such a characterization 
for s / >  2 and r --= 1 and in Section 4 generalize to the case s >~ 2, r ~> 1. 

2. A GENERAL FANO-TYPE ESTIMATE 

In  this section, a Fano-type 1emma (Fano, 1952, 1954; Gallager, 1968; 
Wolfowitz, 1964) is proved, which in Section 3 enables us to obtain an outer 
bound on the capacity region G(P, T~I ). We assume that r = 1 throughout 
Sections 2 and 3. Thus,  since there is only one output alphabet, we denote it 
by Y, and by Y(n) the n-th Cartesian product of Y with itself. 

Now the so-called rate functions are defined, which are useful in the 
formulation and proofs of L e m m a  I, Theorem I, and Theorem 2. Let  
I = {1, 2,..., ~} be a finite indexing set and J = {/1, i2 .... , i~} _c I where 
il < i2 < " " <  i j .  Let  ./tl, A 2 .... ,As and B be finite sets and define 
A(J) = A~ × ... × A~j for all J C_I, J ¢ (~. Let  q(') be a probability 
distribution (p.d.) on A(I), and for each non-empty J c I, denote by qj(') 
the marginal distribution of q(-) on A(J). (Note ql(') = q(')). Finally let 
Q(" ] -) be a non-negative function defined on A(I) × B such that 

Q ( b [ 4 )  = 1 for all ~ E A ( I ) .  
b~B 

Then  for all non-empty J _c I ,  define the rate function 

Rs(q, Q, A(I), B) = ~ ~ q(gO Q(b ] gO 
O~B d~A(1) 

Q(b I a) 
× log ~ qs((Uq ,..., uij)) Q(b I ~) (2.1) 

where, if a = (a 1 .... , a~) a A(I) ,  then A(J,  4) = {~: ~ = (u 1 ..... u~) ~ A(/)  
and uk = ak for all k ¢ J}. When the input and output alphabets and 
the transmission probabilities are understood, we will write Rj(q) for 
Rj(q, Q, A(I), B). Also, i f / =  {1} (that is, there is only one " input  alphabet"),  
we will write R(q, Q, A1, B) for R~(q, Q, A1, B). 

Suppose that for each t = 1 .... , n  a n d h =  1 ..... s a p.d.p~*( ')  o n X k i s  
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given. T h e n  define p.d. ' s  p*('), Pk(') andp(- )  on X,  Xk(n) and ~g,  respectively, 

by  

P*(x*) = r I  pff(xff) for all t = 1,..., n 

qz 

p~(xl~(n)) = l-I pff(xk*) for all k = 1,..., s (2.2) 
t = l  

s L 
p ( M )  = 11 p~(xk(n)) 

k = l  

M t where ~t = ( 1,..., xs') E 2 ,  x,~(n) (x~l,..., xfl ~) ~ X,:(n) and 

M = ( x l ( n )  . . . . .  x~(n) )  ~ ~ .  

N o w  specify p t(.) (for t = 1,..., n and h = 1 ..... s) as follows. Assume a 
code - -  (n,/~) for (P, T~I) is given and let C be as defined in (ii) of  (1.2). 
T h e n  if iVIff(i~) denotes the t- th component  of JV/k(i~), 

pff(x) ~-- l{ik : Mff(ik) = x, 1 ~ ik ~ Ne}I 
N~ (2.3) 

for all t = 1,..., n, k = 1,..., s and x ~ Xk • 
T h e  following is a generalized Fano- type  lemma. I t  was first stated and 

proved in (Ahlswede, 1971b) for the case s = 3, r = 1. Van der Meulen  
(1974) has given an improved statement of  and much  improved proof  of  the 
following lemma. 

LEMMA 1. Given a code --(n, N, 3,) for (P, T~I ). Let pff(') be defined as in 
(2.3) and p~(") as in (2.2). Then for all nonempty D C_ {1,..., s}, there is a number 
kD(3,, n) such that 

\ k ~  D / t = l  

where ( l /n) ko(3,, n) --+ 0 as n -+ oo, A --+ O. 

Proof. T h e  argument  is a generalization of the one in (Ahlswede, 1971b). 
For  ease of notat ion it is assumed I that  D = {1 ..... d} for some integer d, 
1 ~ d ~ s. T h e  extension to arbitrary D presents only notational difficulties, 
and will be omitted. We do the case 1 ~ d < s first; the case d = s requires 
a different argument.  
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Let  the given code be denoted {(M(i), d(i)) :  i ~ i }  where A(i) C_ Y(n) for 
all i ~ L  Let  the given set of codewords C be as denoted in (ii) of (1.2). Then  
consider the probabili ty space (Q,/~) where 

~2 ---- {M: M = (Ma+l(ia+l) ..... M,(i~)) 
for some 

ie ,  1 ~< i~ ~< N~ ,  for all k = d + 1,..., s} 

and/~ is the equidistribution on ~2. 
For each M = (Md+l(ja+l),..., Ms(is))E~2 we define a non-stationary 

discrete memoryless channel (depending on Mr) as follows. T h e  input alphabet 
lSX = 1-Ik=l X~ and the output alphabet is Y. For each t = 1,..., n, a function 
°J~*(" I ") is defined on _~7 × Y by 

~. . .~  M ~ • ~ • ~ ( y  [ ~) ~ (y  t (xl ~ ,  ~+10~+~) .... , M,  0~))) 

for all ~ = (x 1 ,..., Xa) E l f  and y e Y. I f  we define 

d d  = {3) : 3~r is an n × d matrix a n d / ~  e X~(n) for all k ----- 1,..., d}, 

then the transmission probabilities are given by 

P~(y(n) 12V1) = f i  wMt(y ~ I - ~  t) for all y(n) = (yl,..., yn) ~ Y(n) 
t = l  

and ]~r e #/~. 
Given this non-stationary d.m.c. (_~, Y, {w~ : t = 1,..., n}), we construct a 

code for it as follows. Let  N = 1-I~=1 N~, N = 1-Ik=a+l N~ and 

i ~  = (~:  ~ = ( i l  ,..., i~) e i and i~ = A for k = d + 1,..., ~}. 

T h e n  for each M = (Ma+l(ja+l) ..... M~(j~)) e ~2, consider the system 

{(~r, A(0):  ]~r = (M~(i~),..., M~(ia)) for some i ~ i ~ } .  (2.4) 

This  code, although originally meant  for the channel with d senders and one 
receiver, can be regarded as a code for the one-way channel described above, 
by letting the d senders coalesce. 

Furthermore,  if ~' = A - -  ~ log ~, then there is a set B __C ~2 with I B I ~> 
[(h ' - -A)/(A') ]N and such that for all ~ r ~  B, the code in (2.4) is a code 
--(n,  N)  with average probability o f  error h' (see (Wolfowitz, 1964) for 
notation) for the corresponding non-stationary channeI. 

T o  prove this, let a r.v. L*  be defined on ~2 by 

1 
L * ( ~ )  = - ~  ~_ P~(A(O~IM(O) 
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for all M = (Ma+l(ja+l),... , Ms(js)) ~ ,Q. By (1.3) we have EL* ~ A, where the 
expectation is taken with respect to/2(.). Hence, by NIarkov's inequality, the 
set B = {L* < ~'} satisfies I B i ) [()" -- ~)/0()] N as asserted. 

Therefore, by Fano's Lemma, for all M ~ B, 

log ~ ~ R(p, P ~ ,  ~ ,  Y(n)) q- 1 
1 - -  A' ( 2 . 5 )  

where/2(') is the p.d. defined on ~ by 

t ~  if 2~r is in the code in (2.4) 
~(~) = 

otherwise. 

Now for each t = 1,..., n, let/2'(') be a p.d. on ~ defined by 

/~*(~) = ~ '  /2(3~r) for all 2 e X. 

From an argument similar to that of the proof of Theorem 4.2.1 in (Gallager, 
1968), it can be concluded that 

R(~, fir,  ~ ,  Y(-)) ~< ~ R(~*, o&, 2, Y). 

Then (2.5)and (2.6) yield 

(2.6) 

E~=l R(~  t, ~tl~ , f~, ]7) .~ 1 
log N ~ 1 -- h' 

for all M e B. 
Averaging (2.7) over all M e B gives 

(2.7) 

l log b2 ~< (1 -- ~,)-1 ~ ~ R(~,, ~ ,  _~-, y )  
21geD 

n 1 

(2.8) 
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Since 0 ~ R(/2 *, * co M,o~ ,Y)  ~ log l)~[ for all t = 1,...,n and 
[(k' -- h)/(h')] N, the term in curly brackets in (2.8) is smaller than 

Hence 

IB{> 

E(n,A) = n(log [ ~ [)(1 -- h')-I ( h, h ~ h  ) 

= n(1 -- ~,)-1 (log a)(log I 2 [) 

log Nr ~< (1 -- ,V) -1 ~r~ (~'  oJm, X,  Y) + E(n, a). (2.9) 

Note that/21(2) = p~(xl) "" pat(xa) for all ~ = (x x .... , xa) e 2 .  This fact, 
together with the definitions of R(/2 ~, oJ~, 2 ,  Y) and RD(p ~, oJ, 2 ,  Y) 
yield 

1 -~ ~. R(~ ~, oJ~, 2 ,  Y) ~- RD(p ~, oJ, 2 ,  Y). (2.10) 

Putting together (2.9) and (2.10) gives 

log ~ ~ ~ RD(p ~, co, 2 ,  Y) 

÷ (1 -- t ')  -1 + E(n, ;t)l. 
% 

(2.11) 
/ 

The term in curly brackets in (2.11) is smaller than 

kD(h, n) = h'(1 - - / ' ) - l (n  log 2 [) -t- (1 --  k') -~ + E(n, A) 

since 0 ~< RD(p ~, oJ, f;, Y) ~ log I X for all nonempty D C {1,..., s}. This 
fact and (2.11) yield the conclusion of the theorem, in case 1 ~< d < s. 

Now assume d = s. Again we construct an auxiliary channel, this time a 
d.m.c. It has input alphabet X, output alphabet Y, and channel probability 
function to(. [ .). Then the code {(M(i), A(i)) 1 i e i } ,  although originally 
intended for the multi-way channel, can be regarded as a code --(n, N) 
(again, see (Wolfowitz, 1964) for notation) for the d.m.c., by letting the s 
senders coalesce. Furthermore, by (1.3) this code has average probability of 
error k. Thus by Fano's Lemma, 

log N ~ R(f~, P ,  , ./A t, g(n)) + 1 (2.12) 
1 - - k  
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where 

/~(M) , if J ] / /=  M(i) for some i a I 

0, otherwise 

for all M a ~ ' .  
By Theorem 4.2.1 in (Gallager, 1968), we have 

R(p, Pn,/Z, Y(n)) ~< ~ R(fi ~, ~o, 2 ,  Y) (2.13) 

where #~(:~) = ~M:M,=~ #(M) for all ~ e 2 .  Noting tha t /~(~)  = p*(~) for 
all & ~2~7 and t ~ 1,..., n, (2.12) and (2.13) yield 

log N ~ 3~=~ R(Pt' oo, f(, Y) + t 
1 - - ; ~  

Since 0 ~ R(p ~, oJ, X, Y) <~ log I X I for all t = 1,.,., n, 

log N ~ ~ R(p ~, w, 2, Y) -/k(h, n) 

where k()t, n) = hA(1 - -  ~)-i log 1P£ [ + (1 - -  A) -1, and the proof is complete. 

3. CAPACITY REGION OF A CHANNEL WITH s SENDERS AND ONE RECEIVER 

Order the I ~ 2 s -  1 non-empty subsets of {1,..., s} and call them 
D(1),..., D(1). T o  make the notation less complicated, we denote RD(q, co, _~, Y) 
simply by RD(q). Then  define 

F(Y) = {(RD(1)(q),..., R~(z)(q)): q = ql × "" × qs for some ql('),..., q~('), 

w h e r e q ~ ( - ) i s a p . d ,  o n X  k f o r k - ~  1 .... ,s}. 

Also define 

F (Y)  ~ }/(:/{ - -  . . . .  1 ~. (RD(1)(p~),... ' R1)(~)(p~) ) where p~ = Pl* × X p~ 
( /'t t=l 

andp f f  is a p.d. on X k for t = 1,..., n and k - -  1,..., s I 

Let  F*(Y) denote the convex hull o f F ( Y )  and/~  = (R~*,..., R~*) denote an 
arbitrary member  of F*(Y).  (Note that F(Y)C_F(Y)C_F*(Y)).  
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Then  let 

Y ) =  I(R1 ..... R~): E R ~ R , ~ * f o r a l l m = l , . . . , l  I G(/~, 
k IceD(m) I 

a n d G ( Y ) : . , U  G(R, Y). 
ReF*(Y) 

LEMMA 2. G(Y) is convex, closed under projections, and compact in the 
usual topology of Euclidean s-space. 

Proof. The facts that G(Y) is convex, closed under projections and 
bounded are immediate from the definition of G(Y). I t  only remains to show 
it is closed. 

A p.d. q(') on a finite set A with I A I -= a can be viewed as a "probability 
vector" q ~ (q,..., qa) where ql~, for all k, 1 ~< k ~< a, is the probability 
attached to the k-th element of A in some ordering. Thus  qk ~ 0 for all k, 
1 ~< k ~ a, and ~2~=1 qk -~ 1. Viewed in this sense, the set of all product 
p.d. 's on )~ becomes a compact subset of Euclidean ] 2~/-space. Then  by the 
continuity of the rate functions, F (Y)  is a compact subset of Euclidean/-space. 
Since the convex hull of a compact set in a Euclidean space is also compact, 
F*(Y) is compact. 

Let  _~(1), /~(2), -~(3),... be a sequence of elements of G(Y) where 
limn.~ R(n) exists and equals /~, say. We will be done if we show that 
R e G(Y). 

For all n : l, 2, 3,..  there exist/~(n) eF*(Y) such that R(n) e G(R(n), Y). 
Let R -~ (Ra ,..., R~), R(n) -~ (R~(n),..., R~(n)) and R(n) -~ (Rl*(n),... , R~*(n)) 
for all n ~ 1, 2, 3 ..... By the boundedness of F*(Y) there is a/3 < 0 such 
that Rm*(n ) ~ fi for all n ~ 1, 2, 3 ..... and m = 1 ..... l. 

Let e > 0. Then  there is a positive integer n(e) such that n / >  n(e) implies 
~eD(m) R ~ -  • ~ R~*(n)~/3 for all m = 1,..., I. Hence there is a sub-~ 
sequence {n,),~ 1 of {n}n~=l such that for all m = 1,..., l, lim,~o~ Rm*(n,) exists 
and equals R~*, say. SinceF*(Y)is  closed,/~ = (R~*,..., R**) EF*(Y). 

Furthermore, Y~eD(m)R~-  • ~ R m *  for all m ~ 1 ..... l. Since • was 
arbitrary, Y~D(-0 R~ ~ R~* for all m = 1,..., 1. Hence /~  E G(/~, Y), which 
implies/~ e G(Y). 

THEOREM 1. The capacity region G(P, T~I ) = G(Y). 

Proof. First we show G(P, T81 ) C_ G(Y). Let (R 1 ,..., Rs) e G(P, T~I ). 
Let  • > 0 and 0 < ~, < 1. Then  for all n sufficiently large, there is a code 
--(n, /~,  ~) such that (l/n) log N~ ) R~ - -  • for all k ~ 1 ..... s. Using this 
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fact and Lemma 1, it can be concluded that, for any 3 2> 0, if e and A are 
chosen sufficiently small and n sufficiently large, 

Rk ~ n RD(pt) + ~ 
I¢~ D t=l 

for all non-empty D _C {1 ..... s}. Since 

L 
n 

)~ (RD(1)(pt),..., RDe)(pt)) eF*(Y),  
n t=l  

(R 1 - -  3,..., R s -- ~) ~ G(Y). Because 3 was arbitrary, (R 1 ..... Rs) belongs to 
the closure of G(Y), and hence G(Y), since it is closed. 

Now for the direct half--we use Shannon's random coding method. 
Suppose that the following items, to be specified later, are given: positive 
integers n, N 1 ..... Ns and a collection {p t: 1 <~ t <~ n, 1 <~ k <~ s} of p.d.'s, 
wherepkt( ' )  is a p . d .  o n X e  for all t = 1 .... , n  and k =  1 .... ,s. Let p.d. 's 
pt(.), PT~(') and p( ' )  be defined as in (2.2) in terms of the p~'s .  

Let  c~ denote the collection of all sets of codewords C as defined in (ii) of 
(1.2). Define a p.d. p*( ')  on qf by 

[INk p*(C) = I] p~(Mk(ik)) for all CcC~. (3.1) 
k=l ik=l 

Then choose a set of codewords C at random according to the p.d. p*(').  
For  each f ~ I, then, M(i)  will be the matrix satisfying Mk(i) = M~(ik) for all 
k ~- 1,..., s. 

Once the codewords have been chosen, define maximum likelihood decoding 
sets (depending on C) by 

A(i) = {y(n): y(n) e Y(n) and P,,(y(n) I M(~)) > P~(y(n) l M(])) for ally =/= Q. 

The  average error for the code {(M(i), A(i)) 1 ~ ~ i} is 

1 a(c) = N ~ P.(Aq)o L Mq)). 

I f  A*(~) is a r.v. which takes the value x with probability p*{C: ;t(C) = x}, 
for all real x, then the random coding method requires a suitable upper bound 
on EA*(c~) = ~ c ~ p * ( C )  A(C). We proceed now to derive such a bound. 
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Note that 

p*(C) P,~(A(O* I M(O) = y" p*(C)P,~(A(])* i M(/)) 
C~ Ce~ 

for all i,]aJ. Thus if Al*(cg) is a r.v. taking the value x with probability 
p*{C: P,~(A(T) ~ ] M(1)) = x} for all real x, where i = (1, 1,..., 1), then 

Now 

EAt*(g #) ----- EA*(cg). (3.2) 

EAI*(~) = Y. p*(C)P.(A(iy [ M(i)) 

= y~ p(M(i)) P.(A(iy I M(i)) 
M(i)e.,@ 

= y~ ~ p(M) P~(y(n)iM) 
Ma./YY V(n)a Y(~) 

× p*{c: M(i) = M and Pn(y(n) I M(i)) 

< Pn(Y(n) I M(i)) for some i v~: i} 

<~ E E E p(M) Pn(y(n) I M) 

X p*{C: M( i )  = M and P,~(y(n) t M(i)) 

P•(Y(n) [ M(O)}. 

The object then is to bound from above, for each i ~ 1, the corresponding 
term in the sum of the last expression in (3.3). 

Let i ~ : l  be fixed and let D ~{k: i l¢ : / :  1, 1 ~ k  ~ s } .  Let d =  I D I .  
Then if M ~ ~ ,  21~ shall denote the n × d matrix obtained from M by deleting 
the ( s -  d) columns with indices k 6 D. Likewise M shall denote the 
n × (s - -  d) matrix obtained from M by deleting the d columns with indices 
k e D. ~ and _~r denote the collections of all matrices ~ and/~r, respectively, 
as M ranges over dgf. Also, if U e ~  and V E ~ ,  then UV denotes the 
matrix M a J/¢ with ~ ~ U and ./~ = F. 

Define p.d.'s fi(.) and/~(') on ~/{ and ~/[, respectively, by 

/ ~ ( U ) =  E_p(UV) forall  U a J ¢  7 

andfi(V) = ~_.,v~p(UV) for all g a iT,  Note thatp(M) = ~(]l~)fi(]~r) for all 
Med¢. 
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For all non-empty D C (1,..., s}, define the "information function" ID(', ") 
by 

ID(y(n), M) = log P.(y(n)[M) 
Ev~ffe ~(U) P,~(y(n) I UM) 

for all y(n) ~ Y(n) and M e J [ .  Let  N = l-[g~D N~.  Let  ~ be a constant to be 
specified later, and define B(V)={(y(n), U):y(n)eY(n), U e J T ,  and 
ID(y(n), UV) >~ log ~ }  for all V e ~ .  

Then  we have that 

~ p(M) P,~(y(n) [ M)p*{C: M(i) = M and 
Me./ /I  y ( n ) e  Y(n)  

P~(y(n) ] M(f)) <~ P,,(y(n) l M(O)} 

~ fi(V)] ~ D(U)Pn(y(n)] UV)p*{C: M(1) =- UV and 
V~¢/[ LB(V) 

Pn(Y(n) I M(i)) ~ Pn(y(n) [ M(~))} @ ~ /5(U) Pn(y(n) I UV) I • (3.4) 
B(V)  c J 

Using the definition of B(V), a little calculation yields 

~, ;~(U)P~(y(n) E UV)p*{C: M(i) = UV and P.(y(n) ] M(-1)) 
1J( V) 

1 <~ P,(y(n) [ M(/))} < ~ -  for all V ~ ~ .  (3.5) 

As for the second term in square brackets on the RHS of the inequality 
in (3.4), let ID* be a r.v. which takes the value x with probability 

2 p(M)P.(y(n)[M) 
B(x) 

for all real x, where B(x) = {(y(n), M):  ID(y(n), M) = x}. Then  

EID* --= ~ RD(p t) for all D _C {1,..., s}, D v4 ;~. (3.6) 
t=l  

Now choose ~ so that 

~?~r < exp RD(p ~) -- kV'n (3.7) 

for some positive constant k. From (3.6) and (3.7) it follows that 

~ ~(V) Z ~(U)P.(y(n) [ UV) <~ Zp(M)P.(y(n) I M) (3.8) 
Ve,//g B(V) c T 
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where T = {(y(n), M):  I~(y(n), M )  < EID* - -  k ~n-). By Chebyshev's 
inequality, the R H S  of the inequality (3.8) is bounded above by Var(ID*)/k~n. 
I t  is known (for example see Wolfowitz, 1964, Chapter 8) that there is a 
constant k0, independent of n, such that Var(ID* ) ~ kon , for n = 1, 2 . . . . .  

Combining these facts together with (3.2)-(3.5) and (3.8), we have 

l kol 
E;~*(~) <~ ~ + kS (3.9) 

Now we are ready to show that G(Y)  C_ G(P, Tsa ). Let  (R 1 .... , Rs) e G(Y) .  
Let  e > 0, 0 < ~ < e and 0 < )t ~ 1. Then  there is an/ - tuple  

such that 

_R = (RI*,... , R~*) e F * ( Y )  

R e ~ < R ~ *  for all m =  1 .... , l .  (3.10) 
IceD(m) 

Also it is possible to find a/~'  = (RI ' , . . .  , R ( )  ff-ff(I/-) such that 

[ R~* --  R e '  ] < 3/2 for m = 1,..., 1. (3.11) 

Let  n(3) be a positive integer and {q~t]l ~<t ~ n ( 3 ) ,  1 ~ k ~ < s }  be a 
collection of p.d.'s such that 

1 n(~) 
R ~ ' - -  n(~) 2 R~(~)(q0 for m = 1,..., l. 

t= l  

Find a positive integer n o such that if n ~ n 0 , 

n(3) Re '  + n(3) log] ~ ] <  3 (3.12) 

Choose n and k sufficiently large so that 

l ?t k°l ~ (3.13) 
~ N  < 2 and kS < ~.  

Then  find a positive integer n a such that, whenever n >I n 1 , 

k~/n + log ~ + s log 2 - -  n(E - - 3 )  < 0. (3.14) 
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Let  n be an integer satisfying 

n >~ max(n(S), no, nl). (3.15) 

Define a collection {p f f  I t = 1 ..... n; k ----- 1,..., s} of p.d. 's by 

p f f = q [ k  t] for all t = 1 .... ,n ,  k - ~  1 .... ,s ,  

where [t] = t(mod n(8)) and 1 ~ [t] ~< n(3). 
Now define 

(3.16) 

,, ~ _1 ~ RD(~)(p~ ) for 
Rm n t=l  

A little calculation shows that 

IR~--R,.'I ~ n(8) R~,+ n(8) logiR] 
n n 

m = I,..., l. 

for all m = 1,..., l. (3.17) 

Thus  (3.11), (3.12) and (3.17) yie!d 

Now if 

for all m = 1,..., 1. (3.18) 

N~ = (e  ~(Rk-~)} for all k = 1 ..... s, (3.19) 

where (x} denotes the smallest integer ) x, choose a code - - (n , /~)  at random 
as described earlier in the proof using (3.15), (3.16) and (3.19) to specify n, 
{p~:  1 ~ t ~< n, 1 ~< k ~< s} and {Nk: k = 1,..., s}. 

Now (3.9) will hold if ~ satisfies (3.7). But if m is the index such that 
D = D(m),  then by (3.10), (3.14), (3.18) and (3.19), we have 

~ 7  ~< ~ iV[ {exp[n(R~ --  ~)] + 1} 
keD 

~< c~2a [ I  (exp[n(R,~ - -e) ]}  
keD 

c~2 s exp{nR~* - -  ne} 

~< c~2" exp{nR• - -  n3 - -  he} 

6 4 3 / z 9 [ 3 - 2  
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expli °' '  ')) I 
I 

Thus  (3.9) holds, and by (3.13), Ei*(cd) ~< 1. Since the expected error 
averaged over all randomly chosen codes does not exceed A, there must exist 
a code --(n,/~, t). Thus  for all e > 0 and 0 < A < 1 and n ~> max(n(~), no, nl) , 
there is a code --(n, _N, A) for (P, Ts~). Therefore (R~ ..... Rs) e G(P, Tq), 
that is, (R 1 ..... R~) is a set of achievable rates, and the theorem is proved. 

4. CAPACITY REGION OF A CHANNEL WITH S SENDERS AND r RECEIVERS 

We now characterize G(P, Tsr) for s > / 2  and r / >  2. 
For all j = 1,..., r, define o)j(. I ") on 2 × Yj by 

oJj(yl~)  = ~ w(33]&) for a l l ~ 2 a n d a l l y E Y ~ ,  
Y(yJ) 

where Y(y, j)  = {/9 :/9 = (Yl ..... yr) ~ I~ and yj = y}. Then  if q(-) is a p.d. 
on 2 ,  define for each j = 1 .... , r and non-empty D_C{1,..., s}, R~J(q) = 
R (q, 2, 

Let p denote a finite set of s-tuples (ql ,-.., q~) where q~(') is a p.d. on Xk 
for k = 1,..., s. Let  q = ql X "'" × q~, and let/~(') be a p.d. on p. 

To  each pair (p,/~) is assigned a vector/~(p,/z) as follows. Let ~)~(q) = 
R j [ Din(q),'", R~m(q)] for all j = 1,..., r and define t~(p,/z) = (/~1 .... ,/~l) 

where ~ ~ min{i~l , . . . , /~s}  for all m = 1,..., l, and / ? ~  is the ruth 
component of ~o  kc(ql . . . . .  qs) R~(q) for k = 1,..., s and m -= 1 ..... 1. 

Then  deno teF(~)  = {/~ :/~ =/~(p,/~) for some (p,/x)}. Define G(R, ~) = 
{(R~ .... , Rs): ~ D ( ~ )  R~ ~ _ ~  for m = 1,...,/}, and G(I  ~) = (J~F(~) G(R, ~). 

We remark that G(~)  is convex, closed under projections and compact 
in the usual topology of Euclidean s-space. 

THEOREM 2. The capacity region G(P, T~r) = G(IZ). 

Proof. First we show G(P, Tar) C G(I?). Let (R 1 ..... Rs) ~ G(P, Tsr). 
Then  for all e > 0 and 0 < A < 1 and all n sufficiently large, there exists a 
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code --(n,_N,A) for (P, T,r) such that (1 /n) logNe > / R k - - e  for all 
k = 1,..., s. Let  D C {1,..., s}, D =~ 4, and let pet(.) be defined as in (2.3) for 
t = 1 , . . . ,  n and k = 1,..., s. By Lemma 1, we can find a number k~() L n) 
such that 

for all j = 1 .... , r, where (l/n) kD(A, n) ~ 0 as A --~ 0 and n --~ oo. 
Then  let p = {(pl * ..... ps*): t = 1 ..... n} and /z(.) be the equidistribution 

on p. By arguing as in Theorem 1, it follows that for all 3 > 0, if e and A are 
sufficiently small, and n sufficiently large, (R 1 - -  3 ..... R,  - -  8) ~ G(/2, 17) where 
/2 =/~(p, /z) .  Thus  (R 1 ,..., R~) belongs to the closure of G(17), and hence to 
G(17), since it is closed. 

Finally we show G(17) _C G(P, T~). Let (R1 .... , R~) e G(I?). Then  there 
exists a /~  = / 2 ( 0 , / z )  = (/~1 ,.-., _0~) ~F(17) such that ~ D ( , n )  R~ ~ < / ~  for 
m = 1 ..... l. Let  • > 0, 0 < 3 < • and 0 < A < 1. Find a positive integer 
n(3) and a collection {q~*: 1 <~ t <~ n(8), 1 <~ k ~ s} of p.d.'s, where %*(.) 
is a p . d .  on X~ for t = 1 ..... n(3) and k =  1 .... ,s, such that the following 
holds: if p' = {(ql*,..., qst): 1 ~ t ~< n(3)} , / ( . )  is the equidistribution on p', 
and /2 '  = (/~1', .... /?e') = / ~ ( p ' , / ) ,  then l / ~  - -  R ~ ' ]  < 8/2 for m = 1 ..... l. 

For all n >~ n(3), define the collection {p~*: 1 <~ t <~ n, 1 <~ k ~ s} of p.d.'s 
by (3.16), in terms of the q~*'s above. Also define N~ = (e ~(R~-*)) for 
k = 1,..., s. 

Now select a set C ~ ~f of codewords at random according to the p.d. 
p*( ' )  (defined in terms of the p~*'s above) as in the proof of Theorem 1. 
Define decoding sets for all iE  i a n d j  = 1 ..... r by 

Aj(f) = {yj(n): y~(n) e Y~(n) and P~(y~(n) 1 M(i))  

> P~J(yj(n) [ M(i ' ) )  for all i '  =# ~}. 

Now for a l l j  = 1,..., r and C 6 W, define 

Also letfj*(~f) be a r.v. taking the value x with probabilityp*{C: f j (C)  ~- x} for 
all real x. 

Then  for each j = 1,..., r argue as in the proof of Theorem 1 with A(g) 
replaced by Aj(0, P~(" ] ") replaced by P~J(" ] "), and h replaced by Air 2, 
to conclude that for all sufficiently large n, Efj*(W) <~ Air ~. 
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By a Lemma of Shannon (1961), there exists a C ~ W such that f~-(C) 
¢, 

rEf j*(~)  <~ Air for all j = 1,..., r. Thus  ~.=~fj.(C)~< h and (1.3) holds. 
Therefore (Rx ,..., R~) ~ G(P, Ts~) and the proof is complete. 

Remark. At the time the original manuscript  of this paper was submitted, 

the author had just  received a copy of " A  Coding Theorem for Multiple 
Access Channels with Correlated Sources", by D. Slepian and J. K. Wolf, 

in which the authors obtained results for a channel with two senders and one 
receiver for certain correlated sources. 
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