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The Capacity Region of a Channel
with s Senders and r Receivers

MicuarL L. ULrey*

Wichita State University, Wichita, Kansas

The study of multi-way channels was initiated by Shannon in his basic
paper ‘“T'wo-way communication channels” (Shannon, 1961). Ahlswede (1971b)
has defined and classified multi-way channels of various kinds and proved
simple characterizations for the capacity regions of channels with (a) two
senders and one receiver, and (b) three senders and one receiver.

Subsequently, Ahlswede (1974) found a new approach to the coding problem
for a channel with two senders and one receiver which led to an alternative
characterization of the capacity region of this channel. This approach seems
to be more canonical than the earlier one, and was used successfully in deter-
mining the capacity region of a channel with two senders and two receivers
in case both senders send messages simultaneously to both receivers (Ahlswede,
1974). In the earlier paper, Ahlswede conjectured that the results of that paper
would hold for any channel with s > 2 senders and one receiver. A conjecture
of the later paper was that its results would hold for any channel with s > 2
senders and 7 > 1 receivers in case all senders send independent messages
simultaneously to all receivers.

In this paper, we have proved the latter conjecture to be true. The charac-
terization we get for the special case s = 3 and » = 1 is different from that of
Ahlswede’s (1971b) earlier paper. All of our results are obtained under the
assumption of independent sources.

1. Tune CHANNEL MODEL AND STATEMENT OF THE CODING PROBLEM

In this paper, a noisy, discrete, stationary, memoryless channel with s >> 2
senders and 7 > 1 receivers is studied.

Let X;, X,,..., X;and Y, , Y, ,..., ¥, be finite sets; X| ,..., X, denote the
input alphabets and Y7 ,..., ¥, the output alphabets of the channel to be
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described. Forevery t = 1, 2,...,let X;} = Xand V! = Y, forallk = 1,..
andj=1,..,,r.Letnbea pos1t1ve integer and define

Xum)y =1] X3t and Yin) =[] Y forall k=1,.,s
=1

=1
and j = 1,...,7

For each k = 1,..., 5, X;(n) is the set of words of length n with letters

from the alphabet X, which can be sent over the channel; similarly, for each

j = 1,..., 7, Y,(n) is the set of words of length z with letters from the alphabet
Y, which can be received over the channel. Further define

Xt —= X =

—.

Xt and Yt =7 = H Y, forall t=1,..,mn.

k=1 i=1

I

If M is an n X s matrix, let Mt be the element in the #-th row and A-th
column of M, M be the ¢-th row of M, and M, the k-th column of M for all
t =1,..,n and 'k = 1,..., s. Similarly define M, M? and M; for an n X 7
matrix M for all £ = 1,...,# and j = 1,..., 7. Then let

M = {M: Misann X s matrix and M € Xy(n) for all & = 1,..., 5}
and
M = {M: M is an n X r matrix and M; € Yy(n) for all j = 1,..., 7}.

If x,(n) € Xy(n) for all & = 1,..., s, by M = (xy(n),..., x(n)) we shall mean
the matrix M € A with M, = x(n) for £ = 1,..., 5

The column M, (k = 1,..., s) of an M € .# represents a word of length #
sent across the channel by the &-th sender. The row M* (¢ = 1,..., ) of an
M e 4 represents an s-tuple of letters, one letter from each sender, sent
across the channel at instant £ Similarly, the column M, (j = 1,...,7) of an
M e A represents a word of length # received by the j-th receiver, while the
row M¢ (¢ = 1,..., n) represents an r-tuple of letters, one letter intended
for each receiver, received over the channel at instant .

Let w(-|) be a non- negatlve function defined on X X Y such that
Ssep (P | £) =1 forall 2 € X. Then the channel transmission probabilities
are given by

Py(M | M) =[] o(M!| M) forall Me# and Mes. (L1)

=1
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The probability that the » words My ,..., M, are received, given that the s
words M, ,..., M are sent, is given by P,(M | M). The channel with s senders
and 7 receivers is then completely described by the input alphabets X ,..., X,
the output alphabets Y ,.., Y,, and the channel probability function
o).

As to how this channel is actually used, we assume throughout this paper
that all of the s senders send independent messages simultaneously to all of
the 7 receivers. In keeping with the notation of Ahlswede (1971b), this
communication situation is denoted by (P, T,,), where the P refers to the
transmission probabilities defined in (1.1).

A code concept appropriate to the communication situation (P, T',) is now
introduced. Let Nj ,..., N, be positive integers and define N = [Ty Ny,
N = (Ny yoeey Ny and I == {(i; ,..., %5) | &3 is an integer and 1 <C 4, << Ny, for
k=1,.,s}

A code — (n, N) for (P, Ty,) is a system {(M(2), A;(0)): iel,j = 1,.., 7}
such that

(i) M@ e foraliel
(ii) There exists a collection

C = {My(i): My(iz) € X(n) for all 4, == 1,..., N}, and
k = 1,..., s} such that M (i) = M,(7,) for all (1.2)
i=(t,i)eland k= 1,.,s

(i) A G)C Y (n)foralliel,j=1..,r
(iv) A;(@) N Ai(i") = ¢ whenever i £ 7/, forallj = 1,..., 7

For each j = 1,..., 7, define P I(- | ) on A4 X Yyn) by P,{(y;(n) | M) =
5 e Po(ML| M), where A(y,(n)) = {M: M € A and M, = y,(n)}. Then
if A is a real number with 0 < < 1, a code —(n, N, \) is a code —(n, N)
such that

N uy S P40 | MG) < (1.3)

iel j=1

where A;(7)¢ denotes the complement of A4,(i).

An s-tuple (R, ,..., R,) of real numbers is called a s-tuple of achievable rates
for (P, Ty,) if for all e > 0 and 0 << A < 1, and for all » sufficiently large,
there is a code —(n, N, A) for (P, T,) such that (1/n) log N}, > R, — e for
all k =1,...,s

The set of all s-tuples of achievable rates is denoted by G(P, T',,). Following
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the terminology of Shannon (1961), G(P, T,,) is called the capacity
region.

The problem then is to find a simple (‘“‘single letter’”) characterization for
G(P, T,,)incases > 2,7 > 1. In Section 3 we obtain such a characterization
for s >> 2 and 7 == 1 and in Section 4 generalize to the case s > 2,7 > 1.

2. A GENERAL Fano-Tyre EsTIMATE

In this section, a Fano-type lemma (Fano, 1952, 1954; Gallager, 1968;
Wolfowitz, 1964) is proved, which in Section 3 enables us to obtain an outer
bound on the capacity region G(P, T';). We assume that 7 = 1 throughout
Sections 2 and 3. Thus, since there is only one output alphabet, we denote it
by ¥, and by Y(#) the n-th Cartesian product of Y with itself.

Now the so-called rate functions are defined, which are useful in the
formulation and proofs of Lemma I, Theorem I, and Theorem 2. Let
I={i, 2,..., o} be a finite indexing set and J = {7}, 4, ,...,7;} C I where
5 <1y < < 7;. Let 4,,4,,..,4, and B be finite sets and define
A(J) = - x A4; for all ]CI J~¢. Let q(*) be a probability
dlstrlbutlon (p d) on A(I ), and for each non-empty JC I, denote by g,(*)
the marginal distribution of ¢(-) on A(J). (Note ¢,(-) = ¢(*)). Finally let
O(: | -) be a non-negative function defined on A(I) x B such that

YO@|d=1 forall aeA().

beB

Then for all non-empty J C I, define the rate function

RAq,Q, A1), B) =}, 3 q(@)Q@|d)

beB de A(l)

0 1 &)
SR Y™ T Y AT M

fie AU,
where, if & = (ay,..., a,)e A(I), then A(], &) = {d: 4 = (uy ,..., 4,) € A(I)
and wu, = @, for all k¢ J}. When the input and output alphabets and
the transmission probabilities are understood, we will write R,(¢) for
Ry(q, 0, A(1), B). Also, if I = {1} (that is, there is only one ““input alphabet’),
we will write R(q, Q, 4, , B) for RJq, 0, 4,, B).
Suppose that for each £ = 1,...,n and k = 1,..., s a p.d. p;(*) on X is
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given. Then define p.d.’s p'("), px(*) and p(-) on X, Xy(n) and .#, respectively,
by

P = [ o) forall t=1,.,n
ol
pe(xe(m)) = | pal(si?)  forall k=1,.,s (2.2)
=1

HO) = [] peln)

b=t
where # = ()., 7)€ X, wp(n) = (..., 2") € Xi(m) and
M = (xy(n),..., x,(n)) € M.

Now specify pf() (for t = 1,...,n and k& = 1,..., 5) as follows. Assume a
code — (n, N) for (P, Ty;) is given and let C be as defined in (ii) of (1.2).
Then if M,}(i;,) denotes the -th component of M(7,),

forallt =1,..,n k= 1,.,sand xe X;,.

The following is a generalized Fano-type lemma. It was first stated and
proved in (Ahlswede, 1971b) for the case s = 3, » = 1. Van der Meulen
(1974) has given an improved statement of and much improved proof of the
following lemma.

LevMa 1. Given a code —(n, N, X) for (P, Ty,). Let pyi(-) be defined as in
(2.3) and pt(*) as in (2.2). Then for all nonempty D C{1,..., s}, there is a number
kp(A, n) such that

log (H Nlc) < i RD(Pt, w, X, Y) "i" kD(/\, n)
t=1

keD
where (1/n) kp(A, n) — 0 as n — oo, A — (.

Proof. 'The argument is a generalization of the one in (Ahlswede, 1971b).
For ease of notation it is assumed} that D = {1,..., d} for some integer d,
1 << d < 5. The extension to arbitrary D presents only notational difficulties,
and will be omitted. We do the case 1 < d < s first; the case d = s requires
a different argument.
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Let the given code be denoted {(M(Z), A(i)): i€ I} where A(i) C ¥Y(n) for
all 7e I. Let the given set of codewords C be as denoted in (ii) of (1.2). Then
consider the probability space (£2, i) where

= {M ‘M = (Md+1(id+1)""! Ms(is))

iy 1 i < Ny, forallk =d + 1,..., 5}

for some

and & is the equidistribution on 2.

For each M = (My1(jgs1)s-» My(j5)) €2 we define a non-stationary
discrete memoryless channel (dependmg on M) as follows. The input alphabet
is X = Hk_l X and the > output alphabet is V. For each ¢ = 1,..., #, a function
wi'(- | *) is defined on X X Y by

wMt(y l 55) = w(y i (xl yeeey Xy Mcti+1(jd+1)""’ Mst(js)))
for all & = (%, ,..., ¥;) € X and y € Y. If we define
= {M : M is an n X d matrix and M, € Xy(n) for all k = 1,..., d},

then the transmission probabilities are given by

Pa(yn) | 90) = [[ wg'(s* | I8 forall 5() = (51,37 € ¥(o)
=1
and Me /4.
Given this non-stationary d.m.c. (X Y, {wiz: t = 1,..., n}), we construct a
code for it as follows. Let N = Hk Ny, N =TT _a41 IV and

Iy ={t:i= (4, i;)eland i = j, for k = d - 1,..., s}
Then for each M = (Mg3(jzia)sees Mo(J5)) €2, consider the system
{(M, A®)): M = (My(3,),..., M(is)) for some i € Iz} 2.4

This code, although originally meant for the channel with d senders and one
receiver, can be regarded as a code for the one-way channel described above,
by letting the d sendets coalesce.

Furthermore, if X' = A — Alog A, then there is a set BC 2 with | B| >
[(N — A)/(N)IN and such that for all M e B, the code in (2.4) is a code
—(n, N) with average probability of error X* (see (Wolfowitz, 1964) for
notation) for the corresponding non-stationary channel.

To prove this, let a r.v. L* be defined on 2 by

L) == ¥ PoAGY | M@)
zEIM
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for all M = (My1(Fasy)se- MJs)) € 2. By (1.3) we have EL* <C A, where the
expectation is taken with respect to f(-). Hence, by Markov’s inequality, the
set B = {L* < X} satisfies | B| = [(\ — N)/(N)] N as asserted.

Therefore, by Fano’s Lemma, for all M € B,

where fi(-) is the p.d. defined on .# by

%, if M is in the code in (2.4)
AT —
0 otherwise,

Now for each t = 1,..., n, let #(-) be a p.d. on X defined by

paE) = Y pdI)  forall seX.

(8T
From an argument similar to that of the proof of Theorem 4.2.1 in (Gallager,
1968), it can be concluded that
R(f, Pg , 4, Y(n)) < Y R(p, ¥z, X, V).
= (2.6)
Then (2.5) and (2.6) yield

i A
log ¥ < 2t R e, 3, ) 1 @7

for all M € B.
Averaging (2.7) over all M e B gives

log N < (1 — X) {}: = Y R(Git,olz, X, Y)]
f=1 N Meo

Hla=n [ s o R, )

t=1 MeB

—Zn 2 %R(ﬁ«i wiz , X, Y)]E- (2.8)
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Since 0 < R(Ef, wfV_,, X, V) < log|X| for all £=1,.,n and {B| >
[ — /()] N, the term in curly brackets in (2.8) is smaller than

E(n, X) = n(log | X |)(1 — X) (7—17)
= n(1 — Xy (log A)(log | X |)
Hence

log N < (1 — X)) [Z” —}\-7 Y R, ok, X, Y)] + E(m, 3. (2.9)

=1 Meo
Note that FH(#) = pyi(xy) = pa(g) for all & = (%, ..., x;) € X. This fact,
together with the definitions of R(f, wjz, X, Y) and Ry(p', w, X, Y)
yield

% Y R@, olp, X, V) = Ro(p, , X, 7). (2.10)
Meg

Putting together (2.9) and (2.10) gives

Iog]\~/'< Rp(pt, w, X, Y
P

t=1

+ ém — Xy [i Ry(pt, w, X, Y)]

t=1

(1 — Ny B, N 2.11)

The term in curly brackets in (2.11) is smaller than
kp(h, ) = N(1 — XY (nlog | X |) + (1 — Xy + E(n, A)

since 0 < Ry(p!, w, X, Y) < log| X | for all nonempty D C{1,..., s}. This
fact and (2.11) yield the conclusion of the theorem, in case 1 << d <Cs.

Now assume d == 5. Again we construct an auxiliary channel, this time a
d.m.c. It has input alphabet X, output alphabet Y, and channel probability
function (- { ). Then the code {(M(z), A(%))|7el}, although originally
intended for the multi-way channel, can be regarded as a code —(n, N)
(again, see (Wolfowitz, 1964) for notation) for the d.m.c., by letting the s
senders coalesce. Furthermore, by (1.3) this code has average probability of
error A. Thus by Fano’s Lemma,

R(G, Py, M, Y(n) + 1

log N < T

(2.12)
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where
MMy = 71\]—’ if M= M(@)  forsome iel
0, otherwise
foral M e /.

By Theorem 4.2.1 in (Gallager, 1968), we have

n

R, P, M, Y() < Y R(E, 0, X, Y) (2.13)
t=1

where f4#) = Tnmes (M) for all £ € X. Noting that 4%(£) = p¥(#) for
all #e X and ¢ = 1,..., », (2.12) and (2.13) yield

Sr R0, X V) +1

log N < =

Since 0 < R(p, w, X, Y) <log | X [forallt = 1,...,n,

3

log N < Y R(pt, w, X, V) + kA, )
1

t

It

where k(X, #) = nA(1 — A)log | X | + (1 — A)"%, and the proof is complete.

3. Caracity RecioN oF A CHANNEL WITH s SENDERS AND ONE RECEIVER

Order the [ = 25— 1 non-empty subsets of {l,.., s} and call them
D(1),..., D(I). To make the notation less complicated, we denote Rp(g, w, X, )
simply by Rp(g). Then define

FY) = {Ro(@) Row(9)): ¢ = g2 X ++ X g for some g;(),..., 45("),
where ¢,(*) is a p.d. on X}, for k = 1,..., s}

Also define

— O
F(Y) = {R:R = _ 5 (Rp(p")» Row(p?)) where pf = p;? X - X pjt
=1
and p;tisap.d.on Xy fort = 1,..,nand & = 1,...,s

Let F¥(Y) denote the convex hull of F(Y) and R = (R,*,..., R,*) denote an
arbitrary member of F*(Y). (Note that F(Y)CF(Y) CF*(Y)).



194 MICHAEL L. ULREY
Then let

GR,Y)= |(R;,..,R): ¥ R,<R,*forallm=1,.,1

keD(m)

and GY) = _|J GR,Y)

ReF¥(Y)

LemMa 2. G(Y) is convex, closed under projections, and compact in the
usual topology of Euclidean s-space.

Proof. The facts that G(Y) is convex, closed under projections and
bounded are immediate from the definition of G(Y). It only remains to show
it is closed.

A p.d. q(-) on a finite set A with | A | = a can be viewed as a ‘‘probability
vector” ¢ = (gq,..., ¢,) where ¢, for all k, 1 < k& < 4, is the probability
attached to the k-th element of 4 in some ordering. Thus g, = 0 for all &,
1 <k<a and ¥;_;q; = 1. Viewed in this sense, the set of all product
p.d.’s on X becomes a compact subset of Euclidean | X |-space. Then by the
continuity of the rate functions, F(¥) is a compact subset of Euclidean /-space.
Since the convex hull of a compact set in a Euclidean space is also compact,
FXY) is compact.

Let R(1), R(2), R(3),... be a sequence of elements of G(Y) where
lim,, ., R(n) exists and equals R, say. We will be done if we show that
ReG(Y).

Forallm = 1,2, 3,... there exist R(n) € F¥(Y) such that R(xn) € G(R(n), Y).
Let R = (Ry ,..., R,), R(n) = (Ry(n),..., Ry(n)) and R(n) = (Ry*(n),..., R, *(n))
for all n = 1, 2, 3,... . By the boundedness of F*(Y) there is a § < 0 such
that R, *(n) < Bforalln =1,2,3,..,andm = 1,..., L.

Let € > 0. Then there is a positive integer #(¢) such that # > n(e) implies
S sentm) R — € < R, *(m) < B for all m=1,...,1. Hence there is a sub-
sequence {n,}5; of {n}y; such that for all m = 1,..., [, limy,, R,,*(n;) exists
and equals R,,*, say. Since F¥(¥) is closed, R = (R*,..., R;¥) e FX(Y).

Furthermore, 3 icpm Ry — ¢ < R,* for all m = 1,..., L Since ¢ was
arbitrary, Yuepom By < Ry,* for all m = 1,..., . Hence R e G(R, Y), which
implies R € G(Y).

TurorEM 1. The capacity region G(P, T ) = G(Y).

Proof. First we show G(P, T,)C G(Y). Let (Ry,..., R,) € G(P, Ty).
Let € > 0 and 0 << A < 1. Then for all » sufficiently large, there is a code
—(n, N, A) such that (1/n)log N, > R, — ¢ for all £ = 1,...,s. Using this
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fact and Lemma 1, it can be concluded that, for any 6 > 0, if € and A are
chosen sufficiently small and # sufficiently large,

n

Y Rp(ph) + 8

1
> Ry < 7
t=1

keD

for all non-empty D C{l,..., s}. Since

% ﬁ: (Rpw(p%s-+» Row(p?) eFH(Y),

(R — 8,..., R, — 8) € G(Y). Because & was arbitrary, (R, ,..., R,) belongs to
the closure of G(Y), and hence G(Y), since it is closed.

Now for the direct half—we use Shannon’s random coding method.
Suppose that the following items, to be specified later, are given: positive
integers n, Ny ,..., Vg and a collection {p;*: 1 <t <, 1 <k < s} of p.d.’s,
where p,f() is a p.d. on X for all # = 1,...,7 and k = 1,..., 5. Let p.d.’s
(), 23(°) and p(-) be defined as in (2.2) in terms of the p;¥'s.

Let € denote the collection of all sets of codewords C as defined in (ii) of
(1.2). Define a p.d. p*(-) on € by

pC) = 1 [I pu(Mus)  forall Ce. (3.1)

k=1 =1

Then choose a set of codewords C at random according to the p.d. p*(*).
For each 7 €I, then, M(i) will be the matrix satisfying My(i) = M,(s;) for all
k=1,..,s.

Once the codewords have been chosen, define maximum likelihood decoding
sets (depending on C) by

A(@) = {3(n): y(n) € Y(m) and P,,(y(n) | M(0)) > P,(y(n) | M(])) for all j 1}

The average etror for the code {(M(z), A(3)) |iel}is

M) = 7 L PoAGY | M)

If X4(%) is a r.v. which takes the value x with probability p*{C: \(C) = x},
for all real x, then the random coding method requires a suitable upper bound
on EA¥(®) = 3 cce 2H(C) M(C). We proceed now to derive such a bound.
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Note that
c}:gp*(c) P,(A@) | M()) = CZ(g PHC) PA(5) | M(7))

for all 7, 7el. Thus if \*(%) is a r.v. taking the value x with probability
PHC: P(A(T) | M(1)) = «} for all real x, where I = (1, 1,..., 1), then

EMX%) = EXY®). (3.2)
Now
EMH(E) = CZVP*(C) P,(A(T)y | M(T))
= ), pMD) P, ATy | M(1))
MQ)eH

= Y ) pM)P(ym)| M)

Medl y(n)eY(n)
X p*{C: M(T) = M and Po(3(n) | M(D))
< Poy(n) | M(5) for some i T

S Y p(M)P(ym) | M)

i1 Me# y(n)e¥(n)
X pMC: M(T) = M and P,(y(n) | M(1))
< Po(y(n) | M(2)))-

The object then is to bound from above, for each 7 = 1, the corresponding
term in the sum of the last expression in (3.3).

Let 7 1 be fixed and let D == {k: 4, 5= 1, 1 <k <s5}. Let d = |D]|.
Then if M € .#, M shall denote the # X d matrix obtained from M by deleting
the (s —d) columns with indices k¢ D. Likewise M shall denote the
n X (s — d) matrix obtained from M by deleting the d columns with indices
ke D. 4 and M denote the collections of all matrices M and M, respectively,
as M ranges over .. Also, if Ue# and Ve .4, then UV denotes the
matrix M € # with M = Uand M = V.

Define p.d.’s $(-) and p(-) on .4 and .#, respectively, by

N

HU)= Y pUV) forall Ue.d
Vedl
and (V) = Yy p(UV) for all V e 4. Note that p(M) = (M) p(M) for all
MeA.
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For all non-empty D C{1,..., s}, define the “information function” Ip(:, -)
by
P(y() (M)
Yyeq DU) Pro(y(n) | UM)
for all y(n) e Y(n) and M € #. Let N = [Trep N, - Let a be a constant to be
specified later, and define B(V) = {(3(n), U): y(n) e Y(n), Ue.#, and
In(y(n), UV) = logalN} for all Ve 4.
Then we have that
Y Y pM)P(y(m) | M)p*{C: M(I) = M and
Medl y(n)e¥(n) — =
Py(y(n) | M(1)) < Po(y(m) | M(2))}

< Y 57 L(Zmﬁ(U) Po(y(n) | UV)p*{C: M(T) = UV and

Vet

Ip(y(n), M) = log

P (y(n) | M(D) < Po(y(m) | M)} -+ B(Zy)cﬁ( U) Py(y(n) | UV)J- (3-4)

Using the definition of B(V), a little calculation yields

>, BU) Py(y(m) | UV)p¥{C: M(T) = UV and Py(y(n) | M(T))

B(V)

< P(y(n) | M)} < - for all Ve 4. (3.5)

As for the second term in square brackets on the RIS of the inequality
in (3.4), let I,* be a r.v. which takes the value x with probability

2. p(M) Py(y(n) | M)

B{x)

for all real », where B(x) = {(y(n), M): In(y(n), M) = x}. Then
EI* =Y Rp(p%) forall DC{,.,s}, D+# &. (3.6)
=1
Now choose « so that

olN < exp f Ry(pt) — kV'n (3.7

=1

for some positive constant £ From (3.6) and (3.7) it follows that

> BV ¥ BU)Py(y(n) | UV) <;P(M)Pn(y(ﬂ)lM) (3-8)

Vel B(p)°
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where T = {(y(n), M): Ipn(y(n), M) < EI* — k 4/n}. By Chebyshev’s
inequality, the RHS of the inequality (3.8) is bounded above by Var(I;*)/k?n.
It is known (for example sece Wolfowitz, 1964, Chapter 8) that there is a
constant &, , independent of n, such that Var(Ip*) < kg, for n =1, 2,... .
Combining these facts together with (3.2)—(3.5) and (3.8), we have

Ikl
EN®) < = + - (3.9)

Now we are ready to show that G(Y) C G(P, Ty,). Let (R, ,..., R;) € G(Y).
Lete>0,0 <8 << eand 0 < A < 1. Then there is an [-tuple

= (Ry*,..., R¥) e FX(Y)
such that

R, < R,* forall m=1,.,1 (3.10)

keD(m)
Also it is possible to find a R’ = (R/’,..., R;) € F(Y) such that
IR,*—R,'| <82 for m=1,.,1L (3.11)

Let n(8) be a positive integer and {g;° |1 <t < n(8), 1 <k <5} be a
collection of p.d.’s such that

1 n(8)
n(g) Z RD(m)(Q) for m=1,.,1L

Find a positive integer n, such that if n == #n,,

K(S_)Rm' + n(d)log | X | < 8 (3.12)
n n
Choose « and % sufficiently large so that
1 A kRl A

Then find a positive integer m, such that, whenever n > n, ,

kEVn 4+ log o + slog2 — n(e —8) < 0. (3.14)
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Let # be an integer satisfying
7 2= max{(n(d), 1y , 1)
Define a collection {p,t | t = 1,..., n; & = 1,..., s} of p.d.’s by
Pl =g forall t=1,.,n k=1,.5
where [t] = t(mod #{8)) and 1 < [¢] < »(5).
Now define

RL =% Rou(ph)  for m = 1l
i

A little calculation shows that

Thus (3.11), (3.12) and (3.17) yield
|Rj — Ry*| <8  forall m=1,.,1
Now if

N, = "By forall k=1,..,s5,

forall m=1,..., .

199

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where (x> denotes the smallest integer > x, choose a code —(#, N) at random
as described earlier in the proof using (3.15), (3.16) and (3.19) to specify #,

Pt 1 <t <<n, 1 <h<Ls}and (N2 k= 1,..., s}

Now (3.9) will hold if « satisfies (3.7). But if m is the index such that

D = D(m), then by (3.10), (3.14), (3.18) and (3.19), we have

o < o [T {exp[(R, — o] + 1}

keD

< o2¢ [] {exp[n(R, — )]}

keD

< a2’ exp ;z n(R;, — e)%

keD
< o285 exp{nR,,* — ne}
< o2% exp{nR;, — nd — ne}

643/29/3-2
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= a2° exp

Y. Rp(p?) + n8 — ne
=1

= exp

f Rp(p?y — kVn -+ (BVn 4 log « + slog 2 — n(e — 8))

< exp

z R() — kv/n

Thus (3.9) holds, and by (3.13), EX¥(%¥) < . Since the expected error
averaged over all randomly chosen codes does not exceed A, there must exist
acode —(n, N, X). Thus for all e > 0and 0 < A < 1 and 7 > max(n(8), 7, , m,),
there is a code —(n, N, A) for (P, T,). Therefore (Ry ..., R;) € G(P, T),
that is, (R, ,..., R;) is a set of achievable rates, and the theorem is proved.

4. Capacrry RecioN oF A CHANNEL WITH § SENDERS AND 7 RECEIVERS

We now characterize G(P, T',) for s > 2 and r > 2.
For allj = 1,..., 7, define wy(- | )on X x ¥, by

wly| &)= Y ()& forallféecXandallyel;,
)
where Y(y,7) = {5 :9 = (31 s ¥,) € Y and y; = y}. Then if ¢() is a p.d.
on X, define for each j = 1,...,7 and non-empty D C{l,..., s}, Ryi(q) =
Rp(g, w;, X, Y)).

Let p denote a finite set of s-tuples (g ,..., ¢;) where g,(+) is a p.d. on X},
fork = 1,..,s.Letg = ¢y X >+ X ¢, and let p(-) be a p.d. on p.

To each pair (p, p) is assigned a vector R(p, u) as follows. Let Ri(g) =
[Ri,(l)(q)l..., Ri,0(q)] for a~11 j=1,.,7 and define R(p, ’f) = (Ry,..., Ry)
where R,, = min{R2,..., B} for all m = 1,...,/, and R,* is the mth
component of Y, u(qy 5ees g5) Rifq) for k= 1,...,s and m = 1,..., L.

Then denote F(Y) = {R : R = R(p, p) for some (p, n)}. Define G(R, ¥) =
{(Ry ey RY: Tentm) B < B, form = 1,..., 1}, and G(Y) = Upeppy GR, ¥).

We remark that G(Y) is convex, closed under projections and compact
in the usual topology of Euclidean s-space.

Turorem 2. The capacity region G(P, Ty,) = G(Y).

Proof. First we show G(P, T,,) C G(Y). Let (Ry,..., R,) € G(P, T,).
Then for all € > 0 and 0 << A << 1 and all » sufficiently large, there exists a
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code —(n,N,\) for (P,T,) such that (1/n)log Ny > R, — ¢ for all
E=1,..,s Let DC{l,..., s}, D % ¢, and let p,(-) be defined as in (2.3) for
t=1,.,nand k = 1,..,5. By Lemma 1, we can find a number kp(A, )
such that

log(n Nk) <Y Rpl(p%) + kp(A, n)
keD t=1
for all j = 1,...,7, where (1/n) kp(A, #) >0 as A — 0 and » — co.

Then let p = {(pfyer, pH): ¢ = 1,..., m} and p(-) be the equidistribution
on p. By arguing as in Theorem 1, it follows that for all § > 0, if e and A are
sufficiently small, and # sufficiently large, (R, — §,..., R, — 8) € G(R, V) where
R = R(p, p). Thus (R, ,..., R;) belongs to the closure of G(¥), and hence to
G(Y), since it is closed.

Finally we show G(Y)C G(P, T,). Let (R, ..., R;)) € G(Y). Then there
exists a R = R(p, p) = (Ry,..., B)) eF(Y) such that 3y pim By < B, for
m=1,.,1. Let e > 0,0 <8 <eand 0 <A < 1. Find a positive integer
n(8) and a collection {g;’: 1 << t << n(d), 1 << k& < s} of p.d.’s, where g;%(*)
is a p.d. on X, for t = 1,...,#(8) and & = 1,..., 5, such that the following
holds: if p" = {(¢1%,--., ¢): 1 << t << n(8)}, p'(°) is the equidistribution on p’,
and R’ = (R/,..., B/) = R(p’, '), then | R,, — R,/ | < 82 form = 1,..., L

For all n > n(8), define the collection {p;*: I <<t < n, 1 <k stofpds
by (3.16), in terms of the g¢,"s above. Also define N, = {¢"®~< for
k=1,.,s

Now select a set Ce € of codewords at random according to the p.d.
P*(*) (defined in terms of the p,’s above) as in the proof of Theorem 1.
Define decoding sets for all7e [ and j = 1,..., 7 by

Ay(E) = {y,(n): yi(n) € Yy(n) and P,(y,(n) | M(2))
> P,i(y,(n) | M(¥')) for all ¥ + i}.

Now for all j = 1,..., 7 and C € &, define
1 o )
Fi(C) = <5 ¥ Pi(A0)° | M()).
N iel

Also let f;*(%) be a r.v. taking the value x with probability p*{C: f;,(C) = x} for
all real «.

Then for each j = 1,..., ¥ argue as in the proof of Theorem 1 with A4(7)
replaced by A7), P,(-|-) replaced by P,i(-|-), and A replaced by Ar2,
to conclude that for all sufficiently large n, Ef;*(%) << AJr2.
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By a Lemma of Shannon (1961), there exists a C €% such that f}(C) <
rEfi*(€) < Mr for all j = 1,..,7. Thus X;_; f(C) < A and (1.3) holds.
Therefore (R, ,..., R;) € G(P, T,,) and the proof is complete.

Remark. At the time the original manuscript of this paper was submitted,
the author had just received a copy of “A Coding Theorem for Multiple
Access Channels with Correlated Sources”, by D. Slepian and J. K. Wolf,
in which the authors obtained results for a channel with two senders and one
receiver for certain correlated sources.
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