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SUMMARY & CONCLUSIONS

This paper is a follow-on to a previous paper (Ref. 1), in
which a new reliability tool called Reliability Performance
Module (RPM) was described. Since that time, RPM has
been used to perform a safety analysis trade study of the
Primary Flight Control System (PFCS) architectures
proposed for the joint NASA/Boeing
Fly-By-Light/Power-By-Wire (FBL/PBW) airplane.

The purposes of this paper are to

¢ relate experiences and lessons learned from using RPM
on the FBL/PBW safety analysis,

¢ present the results of the safety analysis.
The conclusions are that

e RPM is a powerful tool for performing reliability
analyses of complex systems,

e the proposed FBL/PBW PFCS architectures meet all of
the safety requirements except for one related to
spoilers.

1. INTRODUCTION

In the following sections, we will describe the FBL/PBW
PFCS architectures and the goals and scope of the study. We
will review the important features of the RPM tool and how
it was applied to this problem. We will discuus two
modelling paradigms and compare their advantages and
disadvantages. Finally, we will present the results of the
study.

2. THE FLY-BY-LIGHT/POWER-BY-WIRE PROGRAM

The goal of NASA’s FBL/PBW program is to
demonstrate the technical feasibility and economic benefit of
optical components and electrically powered actuators on
civil transport aircraft. The Boeing Commercial Airplane
Group has been contracted by NASA to design a modern
FBL/PBW flight control system which meets current

industry safety, reliability and performance requirements.

3. FBL/PBW PFCS STUDY OBJECTIVES &
REQUIREMENTS

In the safety analysis of the FBL/PBW airplane PFCS,
two candidate architectures were analyzed, the baseline
architecture and the final architecture. Safety analyses of
several minimum dispatch configurations of the final
architecture were also performed. The purpose was to
determine the robustness of the architecture in the presence
of certain known failures at the start of the flight.

The objectives were to determine:

e  Whether or not the baseline architecture meets the safety
requirements,

e  Whether or not the final architecture meets the safety
requirements,

e The relative safety of the two architectures, and

e The safety of the final architecture given certain known
failures.

The failure conditions studied were loss of control (LOC)
and hardover (HO) of a single surface, either an aileron, an
elevator, a spoiler or the rudder. Loss of control of a surface
means that the surface assumes a position other than the one
commanded, assumed to be relatively benign. Hardover is a
more serious situation in which the surface assumes a
maximum deflection position. The requirements for the
various failure conditions are shown in Table 3.

In addition to the "nominal” cases, in which the airplane
was assumed to dispatch in a full-up configuration, the LOC
and HO cases were studied when dispatch occurred with
either the left Primary Flight Computer (PFC) OFF, the right
Interface Unit (IFU) OFF, or both. The OFF state indicates a
non-operative but benign condition. The requirements for the
various failure conditions, given the known failures, are
shown in Table 5. The numbers in both Tables 3 and 5 are
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probabilities that the specified event occurs before the
specified time.

4. THE FBL/PBW PFCS ARCHITECTURE MODELS

Schematics of the baseline and final architectures are
shown in Fig. 1 and Fig. 2, respectively. In the interest of
simplicity, only the rudder surface actuators are shown. A
main feature of the architectures are their fiber optic busses.
These busses are implemented via fiber optic star couplers.

The baseline architecture utilizes two distinct busses. A
triplicated ARINC 629 bus serves the Primary Flight
Computers (PFCs), the Air Data and Inertial Unit (ADIRU)
and the Secondary Attitude and Air (data) Reference Unit
(SAARU). The Interface Units (IFUs) act as a bridge
between the 629 bus and a triplicated 1773 bus, which serves
the Power Control Units (PCUs, or actuators). The IFUs also
connect the pilot command sensors to the PFCs. The final
architecture uses one triplicated 629 bus to connect the entire
system.

Tables 1 and 2 list the numbers of each of the subsystems
as well as the number of transmitters, receivers and
connectors needed to implement the bus architectures. Note
the large number of connectors. Since one of the objectives
of the study was to determine the effect of optical connectors
on the overall system reliability, all of them were modelled.
However, large subgroups of them were in series and could
be modelled as a single component. This reduced the number
of components (or more correctly, single-step transitions,
since some components have more than two states) to about
300 for the baseline architecture and about 150 for the final
architecture.

Since the final architecture has fewer components, it is a
less expensive alternative, especially since there is only one
bus type (629) instead of two.

5. THE RELIABILITY TOOL RPM

To understand some of the modelling issues which are
discussed in this paper, it is important to have a basic
understanding of RPM. For a more thorough discussion, see
Ref. 1.

RPM has an executive, which controls the activities of
stimulating the behavioral model, and then observing the
reaction. It also performs all probability calculations. The
behavioral model is a BONeS representation of the system
to be analyzed, produced by the design engineer using the
BONeS graphical modelling capabilities. This model
includes (constant) failure rates associated with component
failures and recovery processes.

The construction of the behavioral model is the
responsibility of the user, but once the model is accepted as
valid and error-free, the executive performs a complete
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reliability analysis automatically.

The executive generates all possible sequences of
failures, such as ("Left PFC FAILs") or ("Rudder PCU 1
FAILs", "Left 629 Star Coupler Turns OFF"), or ("Right IFU
FAILs", "Pilot’s Column Postion Sensor 1 Turns OFF",
"Rudder PCU 2 Receiver Turns OFF"). Order is important,
so that sequence dependencies are captured. The user can
limit the failure space search by specifying either an upper
bound on the number of component failures or a lower
bound on the probability of a failure path. This is called
pruning.

After the generation of each such component failure
sequence, the executive inquires about the state of the
behavioral model. If the model is in any of the specified
failure states, the overall system failure probability is
updated. If the system is alive but the pruning threshold has
been crossed, an overall (conservative) pruning bound is
updated. After each of these cases, another sequence is
generated. If the system is still alive and the pruning
threshold has not been reached, the executive adjoins another
transition to the current failure path. This process continues
until there are no more sequences to try.

6. THE BEHAVIORAL MODELS

The extensive modelling and simulation capabilities of
BONeS allow one to experiment with various ways to model
system behavior, fault propagation, and system health
monitoring. We will describe and discuss two behavioral
models which were proposed for the FBL/PBW
architectures. For convenience, they will be dubbed the
signal model and the failure behavior model.

7. THE SIGNAL MODEL

The BONeS block diagram of the signal model looks
very similar to a schematic of the system, for example,
resembling Fig. 1 or Fig. 2. The components and signals of
this model are defined to mimic behavior of the
corresponding actual components and signals. Fault
propagation is accomplished by signals changing state as
they pass through components which have failed. Health
monitoring is done by checking the aggregate status of
signals which have passed completely through the system,
from pilot and sensor inputs all the way to actuator output.

There are certain complexities in the real system which
are simplified or approximated in the model. For example,
rather than represent exactly all of the possible analog and
digital signals, with their various formats, flags, error
checking bits, etc. we create a single signal object, which has
just two fields. The first field is the type, such as sensor
input, pilot command, PFC command, etc. The second field
is the error status, which can be GOOD, PASSIVE, or
ACTIVE. PASSIVE indicates that the signal is in error but a
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validity flag has been set which is readable by "intelligent"”
components such as the PFC’s. In other words, this is a
detected error. ACTIVE inicates an undetected error, that is,
the signal is in error but the validity flag still reads valid.

Similarly, the behavior of the components is simplified by
viewing them as state machines. Some can be GOOD or
OFF, while others can be GOOD, FAILED or OFF. The OFF
state is a benign, non-operative state, while the FAILED
state indicates that the component produces malicious
output.

In the real system, the redundancy management system
includes monitors, signal selection and fault detection
algorithms, error detection and correction codes, transmitter
inhibits, etc. which determine the output of a component as a
function of the input signals and the component state.

The purpose of the redundancy management in the real
system is to produce acceptable performance in the presence
of certain combinations of detected and undetected failures.
In order to represent this situation without modelling all of
the mirxic details of the redundancy management hardware
and software, we associate a table with each component (or
sub-system) which specifies the state of the output given the
states of the input signal(s) and the state of the component
(or sub-system).

The behavior of individual components or sub-systems is
thus simplified as follows. The output of any component is
PASSIVE if the component is OFF and ACTIVE if the
component is FAILED. If the component is GOOD, then the
output is determined by the state(s) of the input signal(s).

There are two kinds of logic used in this case, which we
will call "monitor" logic and "voter" logic. In the first case, if
there are three input signals, the component "monitors”" a
primary signal, accepts and uses it if valid. If not valid, it
goes to the secondary signal. If both are invalid, it goes to a
tertiary signal. Of course, a signal with an undetected error
will be wrongly accepted. In the second case the output is
simply a function of the numbers of GOOD, PASSIVE and
ACTIVE inputs, regardless of order, similar to voting.

This completes the description of local behavior in the
signal model. We now turn to the global behavior.

After the executive has failed a selected set of
components, two signals are injected into the behavioral
model. The first is a sensor signal and the second is the pilot
input signal. Refer to figures 1 and 2 for the following
discussion.

The sensor signal is transmitted first to the inputs of the
ADIRU and the SAARU. The ADIRU in turn produces two
output signals, one on the left bus and one on the right bus,
while the SAARU produces one output signal on the center
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bus. These signals are sent to the PFC’s, and each PFC
processes these signals, thus producing air and inertial
reference data which is GOOD, PASSIVE or ACTIVE based
on these inputs and the states of the corresponding PFC’s.
This data is saved to be combined with the pilot command
input when it arrives.

Next, the pilot command input signal is sent to each of
the appropriate control sensors on the flight deck (ie.,
column, pedal or wheel position sensors). The output of the
sensors then proceeds to the IFU’s, where they are processed
and transmitted to the PFC’s. These signals are processed by
each PFC, taking into account the state of the air and inertial
reference data as well as the state of the pilot input signals.

The PEC’s then generate surface movement commands,
which proceed to IFU’s in the baseline architecture, but
directly to the PCU’s in the final architecture. In the
baseline, after processing by the IFU’s, the signals proceed
to the PCU’s. In either case, each PCU produces an output
based on the state of the input signals and the PCU.

The outputs of the PCU’s on a given surface are then
collected and the state of the given surface is declared OK,
LOC (loss of control) or HO (hardover) by using rules
similar to the voter logic for determining a component output
signal state.

Suppose, for example, that the condition being studied is
loss of control (LOC) of the rudder. Assume that the
executive causes the PCU on the low rudder actuator
(connected to the center 629 bus) to go from GOOD to
FAILED and the left 629 bus star coupler to go from GOOD
to OFF.

The result is that the output of the PCU on the low rudder
actuator is ACTIVE, the output of the PCU on the mid
rudder actuator is OFF and the output of the PCU on the high
rudder actuator is GOOD. In this case, the surface condition
would be declared LOC, since presumably the GOOD and
ACTIVE actuators would cancel each other out, leaving the
condition to be determined by the remaining PASSIVE
actuator, which means that control of the surface has been
lost, but it has not gone hardover.

The executive then computes the probability
corresponding to the failure sequence ("Low rudder actuator
PCU FAILED", "Center 629 bus star coupler OFF") which
produced this condition, and this is used to update the

probability of LOC of the rudder.

8. THE FAILURE BEHAVIOR MODEL

The failure behavior model, like the signal model, is
represented as a block diagram in BONeS. The models are in
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fact identical at the system and sub-system level. Differences
between the two models occur only in the lowest functional
level of the model. The major difference is in how signal
packets are generated and propagated.

Recall that in the signal model, the system global
condition is evaluated by simulating the sensor and
command signal traffic. The arrival of a signal packet
stimulates the local evaluation of the sub-system failure
condition.

In a failure behavior model, failure condition messages
are only created and transmitted when a sub-system
undergoes a state change. The executive begins the analysis
by stimulating a sub-system failure. This causes a failure
description packet to be generated and injected into the
system’s signal paths, where it is communicated to and
interpreted by other sub-systems.

The receiving sub-systems are then stimulated to respond
to the failure condition in much the same way as they do in
the signal model. A notable exception is that if the received
failure message does not cause an observable sub-system
state change, the sub-system does not propagate the message.
An example of this would be when a voter module receives
an ERROR signal which is effectively masked. In this way,
only deviations from the current system state are reported.
The failure simulation continues until message traffic ceases
and the global system condition is thereby obtained.

The failure behavior paradigm is descended from the
automated FMEA process that has been described in Refs. 2,
3 and 4. It is designed to mimic the actions of an analyst in
propagating a component failure condition to a global system
response. In this modelling paradigm, the analyst defines
local behavior in a block structured environment. The
executive produces the global system effects automatically.

It has been observed (Refs. 2, 4) that by focussing the
analyst’s attention to one component or sub-system at a time,
fewer analysis errors are made. Encapsulation of sub-system
behavior also allows automated consistency checks that
would otherwise be impossible. This result is analogous to
that obtained in modular software design.

9. COMPARISON OF SIGNAL AND FAILURE BEHAVIOR
MODELS

The failure behavior model is computationally more
efficient than the signal model, since it simulates the
behavior of only those portions of the model that are affected
by the failure. The signal model uses a lot of processing time
sending signals through a large part of the system which is
unaffected by the failure.

One of the advantages of the signal model is that it more
closely resembles how the system functions. This can be an
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advantage when changes are made to the original design and
a component’s functional dependence changes.

An example of this was observed in the modelling of
connectors. Using the failure behavior paradigm, a connector
was modelled to send an "ERROR" message when the
connector failed open. This is clearly not the correct
behavior if, for example, the connector is on an unused leg of
the star coupler. While this design dependence can be
modelled (e.g., with a USED/UNUSED state variable), it is
better to rely instead on the system operational simulation to
infer this result. This will be most valuable in more
complicated and less obvious situations.

Also, one of our goals is to integrate timing and
reliability analysis capabilities in RPM. It seems a natural
step from the signal model to a model which includes timing
delays of the signals. That is, in addition to the current
criteria for system failure based on the arrival of certain
signals at the outputs, one can devise criteria for the timely
arrival of such signals, then run the BONeS simulation to see
if those criteria are met when some components have failed.

10. FBL SAFETY ANALYSIS RESULTS

Both architectures met all of the requirements shown in
Table 3 except for the spoiler LOC requirements. This is due
to the fact that each spoiler has but one PCU. The results for
the two architectures were very close. However, the final
architecture met each requirement by a wider margin than
did the baseline.

See Table 4 for an example listing of dominant failure
sequences for loss of control of the left elevator in the final
architecture This table shows the top 20 events in order of
decreasing probability. The reason that some events seem to
be listed twice (with the order of the failures reversed) is that
RPM respects the order of failures in its search. This is the
basis of its ability to find sequence dependencies, although
there are none evident in this table.

Of course, the program searches thousands (perhaps
millions, depending on user-chosen pruning instructions) of
such sequences in its computation of the overall system
failure probability.

The minimum dispatch configurations studied were left
PFC OFF, right IFU OFF, and both. The RPM tool made this
aspect of the study very straightforward. For example, to do
the left PFC OFF case, all that was needed was to set the
state machine of the left PFC permanently OFF, and then run
the analyses as before. Similarly for the other cases.

The results of the minimum dispatch configuration study
are shown in Table 5. Note that there is only slight
degradation in the 1-hour flight safety for loss of control
given a PFC OFF, IFU OFF, or even both a PFC and IFU
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OFF prior to start of flight. Note also that in the case of
hardovers, the effect is not even visible.

Finally, RPM performance is documented in Table 6,
which shows results corresponding to the rudder hardover
case in the final architecture. The probability upper bounds
include an estimate on the probability of pruned paths. The
pruning bound gets progressively smaller as longer failure
paths are explicitly generated. When going from
2-component failure sequences to 3-component failure
sequences, for example, the decrease in the prune bound is
greater in absolute magnitude than the increase in failure
probability due to explicit consideration of more paths. This
explains the drop in the upper bound as longer failure
sequences are considered. Also, the execution time to
compute a pruning bound is trivial compared to the time
needed to determine the system condition after each and
every failure sequence.

This table illustrates the tradeoff between execution time
and tightness of the probability upper bound. For example,
there is quite a jump in the execution time from considering
all 2-component failures to considering all 3-component
failures. However, the resulting decrease in the probability
upper bound is small, and the bound corresponding to the
2-component failure level was sufficient to show compliance
with the rudder hardover requirement. (see Table 3).

In fact, computation of bounds corresponding to
component failure level 2 was sufficient to show compliance
with the safety requirements in all cases.

However, in the minimum dispatch cases (see Table 5),
calculations in all of the hardover cases were taken to the
3-component failure level in order to make clear any
deviations of the non-nominal cases from the nominal one. It
turned out that the differences were about 3 or 4 orders of
magnitude too small to make a difference in the numbers
shown in Table 5.
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Surface/ Requirement Baseline Final
Condition | (Probability in
1-hr Flight)

Aileron LOC 3.0e-7 <247e-8 <2.38e-8
Aileron HO 1.0e-9 <3.22¢-10 <8.94e-11
Elevator LOC 3.0e-7 < 4.65-10 <231e-10
Elevator HO 1.0e-9 <3.5%-10 < 8.82e-11
Rudder LOC 1.0e-9 < 4.67e-10 <2.3e-10
Rudder HO 1.0e-9 < 3.5%-10 < 8.82e-11
Spoiler LOC 3.0e-5 <6.25¢-5 <5985
Spoiler HO 1.0e-6 <1.1e-8 <1.0e-8

Table 3. Summary of Results
able aseling{'s(f FinailArchitecture

ADIRU (GOOD to FAILED)

e SAARU (GOOD to OFF) & ADIRU (GOOD to OFF)

e ADIRU (GOOD to OFF) & SAARU (GOOD to OFF)

e Center 629 Bus (GOOD to OFF) & ADIRU (GOOD to OFF)

e ADIRU (GOOD to OFF) & Center 629 Bus (GOOD to OFF)

e Elevator PCU1 (GOOD to OFF) & Elevator PCU2 (GOOD to FAILED)
e Elevator PCU1 (GOOD to FAILED) & Elevator PCU2 (GOOD to OFF)
e Elevator PCU1 (GOOD to OFF) & Elevator PCU3 (GOOD to FAILED)
o Elevator PCU1 (GOOD to FAILED) & Elevator PCU3 (GOOD to OFF)
e Elevator PCU2 (GOOD to OFF) & Elevator PCU3 (GOOD to FAILED)
e Elevator PCU2 (GOOD to FAILED) & Elevator PCU3 (GOOD to OFF)
* Elevator PCU2 (GOOD to OFF) & Elevator PCU1 (GOOD to FAILED)
e Elevator PCU2 (GOOD to FAILED) & Elevator PCU1 (GOOD to OFF)

Table 4. Primary causes of loss of control
of left elevator in Final Architecture
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Surface Condition |Requirement| Nominal L PFC OFF | RIFUOFF Both OFF
Right Aileron [LOC 3e-7 <2.38¢-8 <2.49¢-8 <2.51e-8 <2.54e-8
Right Aileron [HO le-7 <894e-11 <8.94e-11 <8.94e-11 <8.94e-11
Left Elevator |LOC 3e-7 <2.31e-10 <1.34e-9 <7.63e-10 <1.87e-9
Left Elevator |HO le-7 <8.82¢-11 <8.82¢-11 <8.82e-11 <8.82e-11
Rudder LocC le-7 <231e-10 <1.34e-9 <7.62¢-10 <1.87¢-9
Rudder HO le-7 <8.82e-11 <8.82¢-11 <8.82¢-11 <8.82e-11

Table 5. Minimum Dispatch Results
Component | Number of | Number of | Number of Upper Execution
Failure Paths Failure Paths Bound on Time
Level Searched Paths Pruned | Probability | (3 Sparc
Found 10’s)

1 143 1 142 2.2e-7 2 sec

2 20,274 156 19,976 1.2e-10 227 sec

3 2,827,682 30,230 2,777,334 8.8e-11 33,363 sec

Table 6. Comﬁutl Effort vs. Tightness of Upper Bound
for Rudder Hardover
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ondition (Final Architecture)
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