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SUMMARY & CONCLUSIONS 

This paper is a follow-on to a previous paper (Ref. l), in 
which a new reliability tool called Reliability Performance 
Module (RPM) was described. Since that time, RPM has 
been used to perform a safety analysis trade study of the 
Primary Flight Control System (PFCS) architectures 
proposed for the joint NASA/Boeing 
Fly-By-LightRower-By-Wire (FBLPBW) airplane. 

The purposes of this paper are to 

0 relate experiences and lessons learned &om using RPM 
on the FBLPBW safety analysis, 

present the results of the safety analysis. 0 

The conclusions are that 

0 RPM is a powerful tool for performing reliability 
analyses of complex systems, 

the proposed FBLPBW PFCS architectures meet all of 
the safety requirements except for one related to 
spoilers. 

0 

1. INTRODUCTION 

In the following sections, we will describe the FBLPBW 
PFCS architectures and the goals and scope of the study. We 
will review the important features of the RPM tool and how 
it was applied to this problem. We will discuus two 
modelling paradigms and compare their advantages and 
disadvantages. Finally, we will present the results of the 
study. 

2. THE FLY-BY-LIGHTPOWER-BY-WIRE PROGRAM 

The goal of NASA’s FBLRBW program is to 
demonstrate the technical feasibility and economic benefit of 
optical components and electrically powered actuators on 
civil transport aircraft. The Boeing Commercial Airplane 
Group has been contracted by NASA to design a modern 
FBLPBW flight control system which meets current 

industry safety, reliability and performance requirements. 

3. FBLPBW PFCS STUDY OBJECTlVES & 
REQUIREMENTS 

In the safety analysis of the FBLPBW airplane PFCS, 
two candidate architectures were analyzed, the baseline 
architecture and the final architecture. Safety analyses of 
several minimum dispatch configurations of the final 
architecture were also performed. The purpose was to 
determine the robustness of the architecture in the presence 
of certain known failures at the start of the flight. 

The objectives were to determine: 

Whether or not the baseline architecture meets the safety 
requirements, 

Whether or not the final architecture meets the safety 
requirements, 

The relative safety of the two architectures, and 

The safety of the final architecture given certain known 
failures. 

The failure conditions studied were loss of control (LOC) 
and hardover (HO) of a single surface, either an aileron, an 
elevator, a spoiler or the rudder. Loss of control of a surface 
means that the surface assumes a position other than the one 
commanded, assumed to be relatively benign. Hardover is a 
more serious situation in which the surface assumes a 
maximum deflection position. The requirements for the 
various failure conditions are shown in Table 3. 

In addition to the “nominal” cases, in which the airplane 
was assumed to dispatch in a full-up configuration, the LOC 
and HO cases were studied when dispatch occurred with 
either the left Primary Flight Computer (PFC) OFF, the right 
Interface Unit (IFU) OFF, or both. The OFF state indicates a 
non-opemtive but benign condition. The requirements for the 
various failure conditions, given the known failures, are 
shown in Table 5. The numbers in both Tables 3 and 5 are 
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probabilities that the specified event occurs before the 
specified time. 

4. THE FBWPB W PFCS ARCHITECTURE MODELS 

Schematics of the baseline and final architectures are 
shown in Fig. 1 and Fig. 2, respectively. In the interest of 
simplicity, only the rudder surface actuators are shown. A 
main feature of the architectures are their fiber optic busses. 
These busses are implemented via fiber optic star couplers. 

The baseline architecture utilizes two distinct busses. A 
triplicated ARINC 629 bus serves the Primary Flight 
Computers (PFCs), the Air Data and Inertial Unit (ADIRU) 
and the Secondary Attitude and Air (data) Reference Unit 
(SAARU). The Interface Units (IFUs) act as a bridge 
between the 629 bus and a triplicated 1773 bus, which serves 
the Power Control Units (PCUs, or actuators). The IFUs also 
connect the pilot command sensors to the PFCs. The final 
architecture uses one triplicated 629 bus to connect the entire 
system. 

Tables 1 and 2 list the numbers of each of the subsystems 
as well as the number of transmitters, receivers and 
connectors needed to implement the bus architectures. Note 
the large number of connectors. Since one of the objectives 
of the study was to determine the effect of optical connectors 
on the overall system reliability, all of them were modelled. 
However, large subgroups of them were in series and could 
be modelled as a single component. This reduced the number 
of components (or more correctly, single-step transitions, 
since some components have more than two states) to about 
300 for the baseline architecture and about 150 for the final 
architecture. 

Since the fmal architecture has fewer components, it is a 
less expensive alternative, especially since there is only one 
bus type (629) instead of two. 

5. THE RELIABILITY TOOL RPM 

To understand some of the modelling issues which are 
discussed in this paper, it is important to have a basic 
understanding of RPM. For a more thorough discussion, see 
Ref. 1. 

RPM has an executive, which controls the activities of 
stimulating the behavioral model, and then observing the 
reaction. It also performs all probability calculations. The 
behavioral model is a BONeS representation of the system 
to be analyzed, produced by the design engineer using the 
BONeS graphical modelling capabilities. This model 
includes (constant) failure rates associated with component 
failures and recovery processes. 

The construction of the behavioral model is the 
responsibility of the user, but once the model is accepted as 
valid and error-fiee, the executive performs a complete 

reliability analysis automatically. 

The executive generates all possible sequences of 
failures, such as ("Left PFC FAILs") or ("Rudder PCU 1 
FAILs", "Left 629 Star Coupler Turns OFF"), or ("Right IFU 
FAILs", "Pilot's Column Postion Sensor 1 Turns OFF", 
"Rudder PCU 2 Receiver Turns OFF"). Order is important, 
so that sequence dependencies are captured. The user can 
limit the failure space search by specifying either an upper 
bound on the number of component failures or a lower 
bound on the probability of a failure path. This is called 
pruning. 

After the generation of each such component failure 
sequence, the executive inquires about the state of the 
behavioral model. If the model is in any of the specified 
failure states, the overall system failure Probability is 
updated. If the system is alive but the pruning threshold has 
been crossed, an overall (conservative) pruning bound is 
updated. After each of these cases, another sequence is 
generated. If the system is still alive and the pruning 
threshold has not been reached, the executive adjoins another 
transition to the current failure path. This process continues 
until there are no more sequences to try. 

6. THE BEHAVIORAL MODELS 

The extensive modelling and simulation capabilities of 
BONeS allow one to experiment with various ways to model 
system behavior, fault propagation, and system health 
monitoring. We will describe and discuss two behavioral 
models which were proposed for the FBLPBW 
architectures. For convenience, they will be dubbed the 
signal model and the failure behavior model. 

7. THE SIGNAL MODEL 

The BONeS block diagram of the signal model looks 
very similar to a schematic of the system, for example, 
resembling Fig. 1 or Fig. 2. The components and signals of 
this model are defined to mimic behavior of the 
corresponding actual components and signals. Fault 
propagation is accomplished by signals changing state as 
they pass through components which have failed. Health 
monitoring is done by checking the aggregate status of 
signals which have passed completely though the system, 
from pilot and sensor inputs all the way to actuator output. 

There are certain complexities in the real system which 
are simplified or approximated in the model. For example, 
rather than represent exactly all of the possible analog and 
digital signals, with their various formats, flags, error 
checking bits, etc. we create a single signal object, which has 
just two fields. The first field is the type, such as sensor 
input, pilot command, PFC command, etc. The second field 
is the error status, which can be GOOD, PASSIVE, or 
ACTIVE. PASSIVE indicates that the signal is in error but a 
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validity flag has been set which is readable by "intelligent" 
components such as the PFC's. In other words, this is a 
detected error. ACTIVE inicates an undetected error, that is, 
the signal is in error but the validity flag still reads valid. 

Similarly, the behavior of the components is simplified by 
viewing them as state machines. Some can be GOOD or 
OFF, while others can be GOOD, FAILED or OFF. The OFF 
state is a benign, non-operative state, while the FAILED 
state indicates that the component produces malicious 
output. 

In the real system, the redundancy management system 
includes monitors, signal selection and fault detection 
algorithms, error detection and correction codes, transmitter 
inhibits, etc. which determine the output of a component as a 
function of the input signals and the component state. 

The purpose of the redundancy management in the real 
system is to produce acceptable performance in the presence 
of certain combinations of detected and undetected failures. 
In order to represent this situation without modelling all of 
the mirse details of the redundancy management hardware 
and software, we associate a table with each component (or 
sub-system) which specifies the state of the output given the 
states of the input signd(s) and the state of the component 
(or sub-system). 

The behavior of individual components or sub-systems is 
thus simplified as follows. The output of any component is 
PASSIVE if the component is OFF and ACTIVE if the 
component is FAILED. If the component is GOOD, then the 
output is determined by the state@) of the input signal@). 

There are two kinds of logic used in this case, which we 
will call "monitor" logic and "voter" logic. In the first case, if 
there are three input signals, the component "monitors" a 
primary signal, accepts and uses it if valid. If not valid, it 
zoes to the secondary signal. If both are invalid, it goes to a 
tertiary signal. Of course, a signal with an undetected error 
will be wrongly accepted. In the second case the output is 
simply a function of the numbers of GOOD, PASSIVE and 
ACTIVE inputs, regardless of order, similar to voting. 

This completes the description of local behavior in the 
signal model. We now turn to the global behavior. 

After the executive has failed a selected set of 
components, two signals are injected into the behavioral 
model. The first is a sensor signal and the second is the pilot 
input signal. Refer to figures 1 and 2 for the following 
discussion. 

The sensor signal is transmitted first to the inputs of the 
ADIRU and the SAARU. The ADIRU in turn produces two 
output signals, one on the left bus and one on the right bus, 
while the SAARU produces one output signal on the center 

bus. These signals are sent to the PFC's, and each PFC 
processes these signals, thus producing air and inertial 
reference data which is GOOD, PASSIVE or ACTIVE based 
on these inputs and the states of the corresponding PFC's. 
This data is saved to be combined with the pilot command 
input when it arrives. 

Next, the pilot command input signal is sent to each of 
the appropriate control sensors on the flight deck (Le., 
column, pedal or wheel position sensors). The output of the 
sensors then proceeds to the IFU's, where they are processed 
and transmitted to the PFC's. These signals are processed by 
each PFC, taking into account the state of the air and inertial 
reference data as well as the state of the pilot input signals. 

The PFC's then generate surface movement commands, 
which proceed to IFU's in the baseline architecture, but 
directly to the PCU's in the fmal architecture. In the 
baseline, after processing by the IFU's, the signals proceed 
to the PCU's. In either case, each PCU produces an output 
based on the state of the input signals and the PCU. 

The outputs of the PCU's on a given surface are then 
collected and the state of the given surface is declared OK, 
LOC (loss of control) or HO (hardover) by using rules 
similar to the voter logic for determining a component output 
signal state. 

Suppose, for example, that the condition being studied is 
loss of control (LOC) of the rudder. Assume that the 
executive causes the PCU on the low rudder actuator 
(connected to the center 629 bus) to go from GOOD to 
FAILED and the left 629 bus star coupler to go from GOOD 
to OFF. 

The result is that the output of the PCU on the low rudder 
actuator is ACTIVE, the output of the PCU on the mid 
rudder actuator is OFF and the output of the PCU on the high 
rudder actuator is GOOD. In this case, the surface condition 
would be declared LOC, since presumably the GOOD and 
ACTIVE actuators would cancel each other out, leaving the 
condition to be determined by the remaining PASSIVE 
actuator, which means that control of the surface has been 
lost, but it has not gone hardover. 

The executive then computes the probability 
corresponding to the failure sequence ("Low rudder actuator 
X U  FAILED", "Center 629 bus star coupler OFF") which 
produced this condition, and this is used to update the 
probability of LOC of the rudder. 

8. THE FAILURE BEHAVIOR MODEL, 

The failure behavior model, like the signal model, is 
represented as a block diagram in BONeS. The models are in 
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fact identical at the system and sub-system level. Differences 
between the two models occur only in the lowest functional 
level of the model. The major difference is in how signal 
packets are generated and propagated. 

Recall that in the signal model, the system global 
condition is evaluated by simulating the sensor and 
command signal traffic. The arrival of a signal packet 
stimulates the local evaluation of the sub-system failure 
condition. 

In a failwe behavior model, failure condition messages 
are only created and transmitted when a sub-system 
undergoes a state change. The executive begins the analysis 
by stimulating a sub-system failure. This causes a failure 
description packet to be generated and injected into the 
system’s signal paths, where it is communicated to and 
interpreted by other sub-systems. 

The receiving sub-systems are then stimulated to respond 
to the failure condition in much the same way as they do in 
the signal model. A notable exception is that if the received 
failure message does not cause an observable sub-system 
state change, the sub-system does not propagate the message. 
An example of this would be when a voter module receives 
an ERROR signal which is effectively masked. In this way, 
only deviations from the current system state are reported. 
The failure simulation continues until message traffic ceases 
and the global system condition is thereby obtained. 

The failure behavior paradigm is descended from the 
automated FMEA process that has been described in Refs. 2, 
3 and 4. It is designed to mimic the actions of an analyst in 
propagating a component failure condition to a global system 
response. In this modelling paradigm, the analyst defines 
local behavior in a block structured environment. The 
executive produces the global system effects automatically. 

It has been observed (Refs. 2, 4) that by focussing the 
analyst’s attention to one component or sub-system at a time, 
fewer analysis errors are made. Encapsulation of sub-system 
behavior also allows automated consistency checks that 
would otherwise be impossible. This result is analogous to 
that obtained in modular software design. 

9. COMPARISON OF SIGNAL AND FAILURE BEHAVIOR 
MODELS 

The failure behavior model is computationally more 
efficient than the signal model, since it simulates the 
behavior of only those portions of the model that are affected 
by the failure. The signal model uses a lot of processing time 
sending signals through a large part of the system which is 
unaffected by the failwe. 

One of the advantages of the signal model is that it more 
closely resembles how the system functions. This can be an 

advantage when changes are made to the original design and 
a component’s functional dependence changes. 

An example of this was observed in the modelling of 
connectors. Using the failure behavior paradigm, a connector 
was modelled to send an “ERROR message when the 
connector failed open. This is clearly not the correct 
behavior if, for example, the connector is on an unused leg of 
the star coupler. While this design dependence can be 
modelled (e.g., with a USEDAJNUSED state variable), it is 
better to rely instead on the system operational simulation to 
infer this result. This will be most valuable in more 
complicated and less obvious situations. 

one of our goals is to integrate timing and 
reliability analysis capabilities in RPM. It seems a natural 
step from the signal model to a model which includes timing 
delays of the signals. That is, in addition to the current 
criteria for system failure based on the arrival of certain 
signals at the outputs, one can devise criteria for the timely 
arrival of such signals, then run the BONeS simulation to see 
if those criteria are met when some components have failed. 

10. FBL SAFETY ANALYSIS RESULTS 

Also, 

Both architectures met all of the requirements shown in 
Table 3 except for the spoiler LOC requirements. This is due 
to the fact that each spoiler has but one PCU. The results for 
the two architectures were very close. However, the final 
architecture met each requirement by a wider margin than 
did the baseline. 

See Table 4 for an example listing of dominant failure 
sequences for loss of control of the left elevator in the final 
architecture This table shows the top 20 events in order of 
decreasing probability. The reason that some events seem to 
be listed twice (with the order of the failures reversed) is that 
RPM respects the order of failures in its search. This is the 
basis of its ability to find sequence dependencies, although 
there are none evident in this table. 

Of course, the program searches thousands (perhaps 
millions, depending on user-chosen pruning instructions) of 
such sequences in its computation of the overall system 
failure probability. 

The minimum dispatch configurations studied were left 
PFC OFF, right IFU OFF, and both. The RPM tool made this 
aspect of the study very straightforward. For example, to do 
the left PFC OFF case, all that was needed was to set the 
state machine of the left PFC permanently OFF, and then run 
the analyses as before. Similarly for the other cases. 

The results of the minimum dispatch configuration study 
are shown in Table 5.  Note that there is only slight 
degradation in the 1-hour flight safety for loss of control 
given a PFC OFF, IFU OFF, or even both a PFC and IFU 
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OFF prior to start of flight. Note also that in the case of 
hardovers, the effect is not even visible. 

Finally, RPM performance is documented in Table 6, 
which shows results corresponding to the rudder hardover 
case in the final architecture. The probability upper bounds 
include an estimate on the probability of pruned paths. The 
pruning bound gets progressively smaller as longer failure 
paths are explicitly generated. When going from 
2-component failure sequences to 3-component failure 
sequences, for example, the decrease in the prune bound is 
greater in absolute magnitude than the increase in failure 
probability due to explicit consideration of more paths. This 
explains the drop in the upper bound as longer failure 
sequences are considered. Also, the execution time to 
compute a pruning bound is trivial compared to the time 
needed to determine the system condition after each and 
every failure sequence. 

This table illustrates the tradeoff between execution time 
and tightness of the probability upper bound. For example, 
there is quite a jump in the execution time from considering 
all 2-component failures to considering all 3-component 
failures. However, the resulting decrease in the probability 
upper bound is small, and the bound corresponding to the 
2-component failure level was sufficient to show compliance 
with the rudder hardover requirement. (see Table 3). 

In fact, computation of bounds corresponding to 
component failure level 2 was sufficient to show compliance 
with the safety requirements in all cases. 

However, in the minimum dispatch cases (see Table 5) ,  
calculations in all of the hardover cases were taken to the 
3-component failure level in order to make clear any 
deviations of the non-nominal cases from the nominal one. It 
turned out that the differences were about 3 or 4 orders of 
magnitude too small to make a difference in the numbers 
shown in Table 5.  
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Surface/ Requirement 
Condition (Probability in 

l-hr Flight) 

Baseline Final 

Aileron LOC 

Aileron HO 

Elevator LOC 

Elevatol HO 

RudderLOC 

- .  
3.0e7 < 2.41-8 < 2.38e-8 

1 . b 9  < 3.22e-10 < 8.-11 

3.oe-7 < 4 . 6 5 1 0  < 2.31-10 

1.k-9 < 359-10 < 8.82e-11 

1.0-9 < 4.67e-10 < 2.3-10 

Table 3. Summary of Results 
Baseline vs. Final Architecture 

Rudder HO 

~~~ 

ADIRU (GOOD to FAILED) 

SAARU (GOOD to OFF) & ADIRU (GOOD to OFF) 

ADIRU (GOOD to OFF) & SAARU (GOOD to OFT) 

0 Center 629 Bus (GOOD to OFF) & ADIRU (GOOD to OFF) 

ADIRU (GOOD to OFF) & Center 629 Bus (CJOOD to OFF) 

Elevator PCUl (GOOD to OFF) & Elevator PCU2 (GOOD to FAILED) 

Elevator PCUl (GOOD to FAILED) & Elevator PCU2 (GOOD to OFF) 

Elevator PCUl (GOOD to OFF) & Elevator pCU3 (GOOD to FAILED) 

0 Elevator PCUl (GOOD to FAILED) & Elevator PCU3 (GOOD to OFF) 

Elevator PCU2 (GOOD to OFF) & Elevator pCU3 (GOOD to FAILED) 

Elevator PCU2 (GOOD to FAILED) & Elevator PCU3 (GOOD to OFF) 

0 Elevator PCU2 (GOOD to OFF) & Elevator X U 1  (GOOD to FAILED) 

Elevator PCU2 (GOOD to FAILED) & Elevator PCUl (GOOD to OFF) 

Table 4. Primar causes of loss of control 
of left erevator in Final Architecture 

1.Oe-9 c 3.59e-10 < 8.82e-11 

324 

spoiler Loc 

Spoiler HO 
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3.&-5 < 6.25e-5 5.98e-5 

1 .oe-6 < l.le-8 < 1.oe-8 



Failure 
Level 

Number of Number of 
Paths Failure 

Searched Paths 
Found 

143 1 

20,274 156 

13 

Number of Upper 
Paths Bound on 

Pruned Probability 

142 2.2e-7 

19,976 1.2e-10 

Table 5. Minimum Dispatch Results 

2,827,682 130,230 12,777,334 18.8e-11 

Execution 
Time 

(3 Sparc 
10’s) 

227 sec 

Table 6. Com utin Effort vs. Ti htness of Upper Bound 
for &udd% Hardover tondition (Fmal Architecture) 
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