A Graphical Model-Based Reliability Estimation Tool
and Failure Mode & Effects Simulator

David M. Nicol @ College of William and Mary @ Williamsburg
Daniel L. Palumbo @ NASA Langley Research Center ® Hampton
Michael L. Ulrey ® Boeing Defense & Space Group e Seattle

Key Words: Reliability Estimation, Graphic User Interface, Failure Mode & Effects Simulator

SUMMARY & CONCLUSIONS

A new graphical reliability estimation tool, Reliability
Performance Module (RPM), is described. RPM combines
the features of a powerful reliability tool, Reliability Estima-
tion System Testbed (REST), developed at NASA Langley,
with the convenient graphical modelling and simulation ca-
pabilities of an off-the-shelf commercial software package,
Block Oriented Network Simulator (BONeS), from the Alta
Group of Cadence Design Systems. In order to estimate the
reliability of a system, the built-in BONeS graphics capabili-
ties are used to describe the system, and the embedded REST
execution engine produces a reliability analysis automati-
cally. An additional benefit of this approach is that a detailed
failure modes and effects analysis can be derived by using
the simulation capabilities of the tool. The usage of and out-
put from RPM is demonstrated with an example system. As
compared to our current design process, RPM promises to
reduce overall modelling and analysis time, provide better
documentation, make trade studies easier, create reusable
modelling components and subsystems, and provide the inte-
gration of reliability and timing analysis necessary to guaran-
tee the safety of critical real-time systems. Future work will
concentrate on producing a more seamless integration of the
reliability and timing analyses. Additional planned enhance-
ments include a distributed (parallel) processing mode, and
availability and phased-mission analysis capabilities,

1. INTRODUCTION

In this paper, we describe a software tool, called Reliabil-
ity Performance Module (RPM). RPM represents the latest
phase in an evolutionary process. It borrows heavily, both in
philosophy and in actual code, from the Reliability Estima-
tion System Testbed (REST) tool, developed at NASA Lan-
gley, and described in Ref. 1. REST, in turn, evolved from
the ASSIST/SURE tool set (Ref. 2, 3, 4, and 5) also devel-
oped at NASA Langley, and from the Reliability Model
Generator (RMG) program, developed at Boeing (Ref. 6). In
Ref. 1, the authors show how their unique simultancous

state-space-generation/state-space-analysis technique to-
gether with parallel processing combine to reduce dramati-
cally the execution time of a model with almost 500 compo-
nents. Also explained is the idea of Failure Mode Effects
Simulation (FMES), wherein the "local” behavior of system
components (entered by the modeller) is expanded by the
program into "global” behavior (computed by the tool),
which reveals system-wide effects such as system failure.
The modelling philosophy of REST is based on a modular,
hierarchical approach that is easily adaptable to graphical in-
put methods. The next logical step was to provide a graphical
input method, and the result is described herein.

As explained below, there is more to the story than simply
replacing text with pictures. The unique feature of RPM is
that it is a reliability tool (REST) embedded in the Block
Oriented Network Simulator (BONeS) environment. BONeS
is a graphical modelling and simulation tool, originally in-
tended to model and analyze complex data and communica-
tion networks. The modelling capabilities of BONeS are
more flexible and intuitive than a modelling language alone
when it comes to describing a complex system.

2. OBJECTIVES of RPM DEVELOPMENT

The primary goal in the development of RPM was to pro-
duce a tool to perform the integrated reliability and timing
analysis of critical real-time systems. These systems are typi-
cally designed with a high degree of fault tolerance. The reli-
ability and timing analyses of such systems are often done
separately. Ref. 8 contains an excellent discussion of the
dangers of this practice.

This consideration was a strong motivator in the decision
to combine REST and BONeS. The BONeS tool is specifi-
cally designed for evaluating system performance in terms of
throughput and delay measures. One could use one of these
measures, say, end-to-end signal delay, to evaluate whether
or not the system is still alive, i.e., still performing all safety
critical functions. Also, one could make use of the the statis-
tical measures in BONeS, for example, mean response time,

0149-144X/95/$4.00 ©1995 IEEE
74 1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

to trigger transitions, or again, assess system failure.

In its current state of development, the RPM tool is not
capable of combining the reliability and timing models so
neatly. What one can do at this stage is create a BONeS
model with pure reliability attributes and a separate model
with pure performance (timing and throughput) attributes to
do reliability and performance analyses. However, one of the
main objectives in future work is to achieve a more seamless
union of these models so we can claim that the two processes
are truly "integrated.”

Therefore, we shall restrict the discussion in this paper to
the reliability analysis capabilities of the tool, and postpone
the discussion of integrated reliability and performance capa-
bilities to a future paper.

As for goals having to do solely with reliability analysis,
our experience with the use of reliability packages has pro-
duced the following list of things any good tool should do:

(1) Document the configuration and modelling assump-
tions for each candidate system architecture.

(2) Identify dominant failure modes.
(3) Reveal subtle failure sequences.
(4) Produce understandable results.
In addition, usage of the tool should:

(5) Allow the engineer to use simple language, graphical
icons, etc., to define how the system works, the redundancy
management operation, and the operational mode fault deg-
radation strategy, i.e., the plan for continuing operation in
various degraded states.

(6) Prompt the engineer for missing definitions and sim-
plifying assumptions, and document these assumptions as
part of the analysis output.

(7) Output failure sequences and their probabilities to a
specified level of detail so the engineer can assess system ar-
chitecture strengths and weaknesses, thus making it easier to
do trade studies.

Most of these objectives have been met through the devel-
opment of RPM. This will be explained in more detail be-
low.

3. EXHAUSTIVE ANALYSIS & THE MONTE CARLO
METHOD

The analysis approaches used in RPM are derived from
the REST program. The exhaustive analysis method is a
variation on the method used in the SURE program. In both
programs, the overall system failure probability is estimated
by computing upper and lower bounds on every failure se-
quence (subject to pruning) and accumulating these to pro-
duce upper and lower bounds on the overall system failure
probability. See Ref. 4, 5 or 7 for details.

1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

The difference between SURE and REST lies in the way
the tasks of state-space generation and state-space analysis
are performed. The SURE program requires the entire list of
state-space transitions be generated in advance. The REST
approach is to perform a depth-first search of all possible
"paths” (sequences of state-space transitions), computing up-
per and lower bound estimates on these paths as they are
generated, and discarding a path when its analysis is com-
plete. This technique also makes "trimming (or pruning) on
the fly" possible. Just as with SURE, the overall system fail-
ure probability is estimated by accumulating the upper and
Iower bounds on all possible paths, subject to pruning.

The advantage of the REST approach is that the memory
requirements are much less severe than for SURE. Also, be-
cause of the empirical fact that, for most systems, after a
small number of component failures (3-5), the system is
either dead or the path probability is insignificant compared
to the overall system failure probability, the price paid for
this memory gain in terms of execution time is small. See
Ref. 7 for details.

An alternative to the exhaustive analysis approach is to
use Monte Carlo simulation with importance sampling. The
basic idea is to choose transition paths at random, using the
relationship between fast and slow transition rates out of a
given state to bias the choice towards rare events. The skew
in the proability distribution thus introduced is accounted for
later using standard importance sampling techniques. The
use of this approach within REST is described in Ref. 7. This
capability is now also part of RPM.

4. PROGRAM OVERVIEW

The fundamental design concept of RPM has two basic
elements: the executive and the behavioral model.

These elements can be thought of as being part of an ex-
periment, where the executive plays the role of an experi-
menter attempting to deduce the properties of the behavioral
model through stimulation and observed reaction.

From the user’s (i.e., design engineer’s) point of view, the
executive is of absolutely no concern, while the behavioral
model is entirely the engineer’s responsibility to construct.

Again from the user’s point of view, there are two stages
to the use of RPM. In the first stage, the behavioral model is
constructed using the BONeS graphical modelling facilities.
In the second stage, the user creates a BONeS simulation
from the model, sets model parameters, e.g. component fail-
ure rates, and starts the simulation. At this point, the execu-
tive takes over, stimulates and analyzes the model automati-
cally, eventually producing output in the form of the overall
system failure probability, lists of dominant failure se-
quences and their probabilities, and the probabilities of user-

75

specified system failure events.
5. THE EXECUTIVE

After the behavioral model has been constructed and the
simulation has begun, the operation of RPM at the top level
appears to be a rapid-fire "conversation" between the execu-
tive and the behavioral model. The primary messages from
the executive to the behavioral model are

1. Load a given state.
2. Is the current state a death state?

. 3. Fire all possible transitions and report the resulting new
states.

The behavioral model responds to (1) by configuring it-
self in the specified state. This activity may involve side ef-
fects which cascade through the system. For example, the
failure of a particular component may result in messages be-
ing sent which inform other components of this situation.
Also as a result of this failure, for example, a configuration
management module may enter a state indicating that a re-
covery process has begun. In any case, when the "dust has
settled,” the behavioral model informs the executive that it is
now in the specified state.

In response to (2), the behavioral model checks each of
the system failure criteria, which were specified by the engi-
neer as part of the behavioral model, to see if its current state
meets any of them. The behavioral model returns a yes or no
answer to the executive.

If the answer to (2) is yes, the current state is a death
state, the executive performs probability calculations which
update the cumulative upper and lower bounds on the system
failure probability. This state is then discarded. If there are
no states left, the program ends and the final results are out-
put. If the executive has any states left to load, it gives the
next one to the behavioral model and the whole process be-
gins anew.

If the answer to (2) is no, the current state is not a death
state, the executive asks the behavioral model to fire all pos-
sible transitions, which were specified by the engineer as
part of the behavioral model. In response to (3), the behav-
ioral model fires transitions one by one. Each time a transi-
tion fires, it may happen that a series of messages are sent or
other side effects occur. In any case, when this activity
ceases, the behavioral model reports the resulting state to the
executive, resets itself to the original state specified by the
executive, and fires the next transition. This continues until
there are no more transitions. The executive then presents a
new state to be loaded, if any are left, and the whole process
begins anew.

The executive conducts its search of the transition se-

quence space in one of two modes, exhaustive analysis mode
or Monte Carlo mode. In the exhaustive analysis mode, all
possible transition sequences are generated, subject to user-
definable pruning criteria. In the Monte Carlo mode, the
transition paths are chosen stochastically so as to improve
the chance of occurrence of rare events of interest. The re-
sponse of the behavioral model to a given sequence of transi-
tions is the same in either case.

6. THE BEHAVIORAL MODEL

As mentioned previously, the behavioral model is a de-
scription of the relevant characteristics of the system to be
modelled and analyzed. As discussed in the objectives sec-
tion, we will focus on those aspects pertaining to the reliabil-
ity analysis only. To illustrate the important features of the
behavioral model, the example shown in Figures 1 and 2 will
be used. (Figures 1-4 are actual BONeS diagrams). The
block diagram in Fig. 2 is a template for blocks labelled:
String 1, ..., String 4 in Fig. 1.

There are 32 failable components, divided into 4 sirings
of 8 components apiece. Each string consists of one pitch
sensor, one a-to-d converter, one i/o card, two processors and
three power supplies. The components which are not power
supplies in each string are connected in series. One of the
power supplies feeds the ifo card, and the other two feed
both of the processors. The a-to-d converters and the ifo
cards have three modes: GOOD, BAD (active failure) and
OFF (passive failure). All other components and power sup-
plies are either GOOD or FAILED.

All failures are viewed as being permanent, and failure
detection is assumed to be perfect.

The output of each string is either GOOD, BAD or OFF.
For convenience’s sake we will say that the string is GOOD,
BAD or OFF, respectively, in these cases. It turns OFF (pas-
sive failure) if either one of the processors FAILSs, both proc-
essor power supplies FAIL, the a-to-d converter turns OFF,
the i/o card turns OFF, or the i/o power supply FAILs. A
string’s output is GOOD if there is power to all components
which are modelled to have power, and all (non-power sup-
ply) components are GOOD. All other conditions cause the
string’s output to be BAD.

A string attempts to reconfigure to OFF whenever the
pitch sensor FAILs, the a-to-d converter goes BAD, or the
i/o card goes BAD. Once OFF, a string stays OFF.

There are three system failure conditions. A majority vote
failure occurs when the number of BAD strings equals or ex-
ceeds the number of GOOD strings. Nearly coincident fault
failure occurs whenever two or more strings are simultane-
ously BAD, i.e., string recovery was unsuccessful. String ex-
haustion occurs whenever there are no remaining GOOD

76 1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

strings.

The block labelled String Configuration Management
Module (SCMM) in Fig. 2 handles the recovery process for
the string. The SCMM is omniscient, i.e., it is informed im-
mediately of any change in the state of a component in its
particular string. This module, then, is an abstraction made
possible by the assumption of perfect fault detection.

The behavior of each of the components in the string is
described using a finite state machine (FSM) paradigm. For
example, a BONeS representation of the FSM of the A-to-D
and I/O modules is shown in Fig. 3. Note that there are three
states, GOOD, FAILED and OFF.

The FSM transitions from the GOOD state to either the
FAILED or OFF state via spontaneous transitions, denoted
by the blocks with lightning bolts. These transitions corre-
spond to random failures. They are triggered in response to a
command from the executive to fire transitions.

Note also that appropriate messages are output whenever
the FSM enters the FAILED or OFF states. These messages
are sent to the SCMM.

The BONeS representation of the SCMM is shown in
Fig. 4. It has one spontaneous transition, from FAILED to
OFF. This models the recovery mechansism for the string. In
addition, this FSM can also transition from the GOOD state
to the FAILED or OFF state by a stimulated transition, de-
noted by the blocks which look like light switches. That is,
the SCMM transitions in response to a message from any of
the non-power supply components of the string. This transi-
tion is a direct result of a deterministic stimulus, in this case
a message, even though the sequence of events leading to
this message may be initiated by a random event.

Referring back to Fig. 1 again, the purpose of the blocks
labelled GOOD Signal Generator and System Condition Up-
date is as follows. After a transition fires and the affected
string has settled into a new state, the GOOD signal genera-
tor sends out a pulse (labelled GOOD) to all four strings.
This signal then passes through each of the modules of each
string, including the SCMM.

When a signal enters a given module, it comes out
GOOD, BAD or OFF based on the input value and the state
of the module. When the signal finally reaches the SCMM in
a string it is processed as follows. The output signal is OFF if
the input signal is OFF, regardless of the SCMM state. The
output signal is also OFF if the SCMM state is OFF, regard-
less of the input signal. The output signal is GOOD if the in-
put signal and the state of the SCMM are both GOOD. Oth-
erwise, the output of the SCMM is BAD.

The outputs from the four strings are then sent to the Sys-

tem Condition Update module, which counts the number of
GOOD and BAD strings. This information can then be used

by each of the system failure conditions (Majority Vote Fail-
ure, Coincident Fault Failure, and String Exhaustion) to de-
cide whether or not the system is still alive. These system
failure conditions are represented in BONeS by a collection
of arithmetical and logical blocks which computes some
function of the system state and then decides whether or not
a certain test is passed. The system failure conditions are de-
scribed inside the blocks of Fig. 1 labelled System Require-
ments (details not shown).

7. RESULTS

Table 1 shows the model parameters, including compo-
nent failure rates, string recovery rate, and the mission time.
The overall system failure probability bounds (upper and
lower) are shown in Table 2. Note that the exhaustive
analysis bounding interval (4.567¢-12, 4.919¢-12) is con-
tained in the corresponding Monte Carlo bounding interval
(4.57¢-12 - 1.68e-12, 4.58 + 1.69¢-12) when the (95%) con-
fidence interval limits are taken into account. These results
have been repeated using other reliability tools.

8. FAILURE MODE & EFFECTS SIMULATION

As mentioned previously, one of the key concepts of the
RPM design philosophy is that the system to be modelled
and analyzed is viewed as a behavioral model which can be
stimulated and observed. This means that it is possible for
the user to take over the role of the executive block and fail
selected components in order to observe the effect on the
system.

Although this use of the tool helps answer "what if” ques-
tions, it is of limited value, since a human cannot compete
with the computer when it comes to performing thousands of
these operations in a reasonable amount of time.

Therefore, one of the outputs of RPM is a list of the most
important failure sequences, ordered from highest probability
to lowest. Such a list, corresponding to the example, is
shown in Table 3. Because of limited space, only the first
five event sequences are shown. Upper and lower bounds on
the probabilities of each event sequence are displayed, as
well as upper and lower bounds on the cumulative probabil-
ity of the event sequences up to that point. Also shown is the
effect of each failure sequence, which in this case means the
particular system failure conditions (Majority Vote Failure,
Nearly Coincident Fault Failure, or String Exhaustion) which
were satisfied by the the occurrence of the given component
failure sequence. (The first five failure sequences all resulted
in Majority Vote Failure.)

Finally, Table 4 shows the probabilities associated with
each of these system failure conditions. (The event labelled
String Exhaustion has probability zero since the analysis was

1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 77

arbitrarily terminated after 3 component failures.)

Notice that the first five failure sequences are essentially
of the same fype, that is, two (single) power supplies fail,
then a pitch sensor fails. It would be informative to group
such similar sequences into a single event, then make a list
of these events in order of decreasing probability, similar to
the ordering of the raw event sequences in Table 3. In fact
this is done in RPM, but limited space prohibits display of
these results.

Since this is not a traditional FMEA, but has a similar fla-
vor, we call it Failure Modes and Effects Simulation
(FMES). A traditional FMEA would precede the model defi-
nition. Obviously, a model has already been defined by the
time this FMES is performed.

However, it provides much more insight into the strengths
and weaknesses of the system than a single probability-of-
failure number can. The FMES feature can be used to succe-
sively redesign the system by focussing attention on the ele-
ments of the design which contribute to the most prominent
failure sequences. Also, one may be alerted to high probabil-
ity failure sequences which were not considered important
prior to the analysis.

REFERENCES

1. pm Nicol, D.L. Palumbo and A. Rifkin, "REST: A Parallelized Sys-
tem for Reliability Estimation", Annual Reliability and Maintainability
Symposium Proceedings, 1993.

2. R.W. Butler, "An Abstract Language for Specifying Markov Reliabil-
ity Models,” , IEEE Trans. Rel., Vol. R-35, No. 5, pp. 595-601, Dec.
1986.

3. S.C. Johnson, "ASSIST User's Manual,", NASA Tech. Memo 87735,
1986.

4. AL. White, "Upper and Lower Bounds for Semi-Markov Reliability
Models of Reconfigurable Systems,” NASA Contractor Report No.
172340, April, 1984,

5. R.W.Butler, A. L. White, "SURE Reliability Analysis,” NASA Techni-
cal Paper 2764, NASA Langley Research Center, March 1989.

6. G.C. Cohen, "Reliability Model Generator", NASA Contractor Report
182005, 1990.

7. D.M. Nicol, D. L. Palumbo, "Reliability Analysis of Complex Models
Using SURE Bounds," NASA Contractor report 191445 or ICASE Re-
port No. 93-14, March, 1993. To appear in [EEE Transactions on Reli-
ability.

8. K.G. Shin, P. Ramanathan, "Real-Time Computing: A New Discipline
of Computer Science and Engineering," Proceeedings of the IEEE,
January, 1994.

BIOGRAPHIES

David M. Nicol

Department of Computer Science
College of William and Mary
P.O. Box 8795

Williamsburg, VA 23187-8795 USA

email:nicol@cs.wm.edu

Company Name: College of William and Mary

David M. Nicol received the B.A. degree in mathematics from Carleton Col-
lege (1979), and the Ph.D. in computer science from the University of Vir-
ginia (1985). He is presently an associate professor of computer science at
the College of William and Mary. He is associate editor for the ACM Trans-
actions on Modeling and Computer Simulation, and for the ORSA Journal
on Computing. He is on the steering committee for the Workshop on Paral-
lel and Distributed Simulation, and has served as program chair, and also
general chair for that Workshop's annual conference. He is widely pub-
lished in the areas of performance modeling, parallel processing, and simu-

lation.

Daniel L. Palumbo

MS 130

NASA Langley Research Center

Hampton, VA 23665-5225 USA

email:dlp@airl2.larc.nasa.gov

Company Name: NASA Langley Research Center

Dan Palumbo received his BSEE and MSEE degrees from Rensselaer Poly-
technic Institute in 1972 and 1973, respectively. He is a Senior Computer
Engineer with NASA Langley Research Center where his current interests
are related 1o the deployment of distributed and integrated flight control sys-

tems.

Michael L. Ulrey

Boeing Defense & Space Group, M/S 9E-05

700 S.W. 41st St. (7-81-6 bldg.)

Renton, WA 98055 USA

Phone: (206)-657-5640

FAX: (206)-657-5736

email: ulrey@kenyon.ds.boeing.com

Company Name: Boeing Defense & Space Group

Mike Ulrey is a Principal Engineer in the Advanced Vehicle Management
Systems organization of the Boeing Defense & Space Group. He is currently
responsible for the development of the RPM tool, to be included in an inte-
grated design process for rapid prototyping of vehicle management systems.
He has been involved in large applications software development projects
for NCR, TRW, Raytheon and Boeing. He was an assistant professor of
mathematics at Wichita State University. He received a Ph.D. degree in
mathematics from Ohio State University in 1973. He is a member of STAM
and IEEE.

78 1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

mailto:email:nicol@cs.wm.edu
http://2.larc.nasa.gov
mailto:ulrey@kenyon.ds.boeing.com

RPM Example Bahavioral Mods! [29-Jun-1994 13:41:25]

tP Pitch Sensor Failure Rate P Sensor Recovery Rate
1P Ato D Good to Failed Rate

TP AtoD Good to Off Rate

1P 1and O Good to Failed Rate

1P 1and O Good to Off Rate

1P Processor Failure Rate

P Power Supply Failure Rate

E String P}
1

>
GOOD Signal > g{ﬁgﬁon
Generator _FE Update

Stri
B §7 o

Strin,
B 79 of

m Number of Bad Strings
m Number of Good Strings

System
Requirenients

Majorit;
Votls Y

System
Requirerpents

Coincident
Fault Failure

System
Requirentents

String
Exhaustion

Figure 1. Behavioral Model

RPM Example Sting [29-Jun-1994 13:41:44]

2
Dual Power
Sy

m Pitch Sensor Class 1P Pitch Sensor Failure Rate §P 1and O Good 1o Failed Rate P Processor Failure Rate m Failed Message
[F] Ato D Class 1P AtoD Good to Failed Rate 1P 12nd O Goad to O Rate §P Sensor Recovery Rate [F] otf Message
1P AtoD Good 1o Off Rate
[?] 1and O Class P Power Supply Faliure Rate
m Single Power Supply Class
[P] Dual Power Supply Class
{F] Processor Class
[P] siring Configuration Class
z % 5 5 2 v
Sgralin ! . . Sgnal Out
Pitch Ao fand Processor . Processor p, String Ct
> Sensor s D B P o > Man"g ement s
.y A A A A Module
0 g | |

Figure 2. Template for "String"

1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

79

RPM Example Finite State Machine [21-Sep-1994 17:40:29]

M Local State 1P Good to Failed Rate P Class Name P Incoming Message
TP Good to Off Rate TP Outgoing Message
1
o Message Out
JAN
—p> TRENTO DJ——‘D .
GOOD FAILED
to FAILED
JAN &

4

GOOD

L

GOOD OFF

Message In

Figure 3. Finite State Machine Template for /O and A/D Modules

RPM Example Configuration Management [21-Sep-1994 15:00:04]

™M Local State P Recovery Rate {P Class Name [F] Failed Message
EOﬂ Message
1
1
© o
'
/6
—> V7 > > > > TRENTOr
'
FAILED FAILED
GO0 1o OFF
1o FAILED JANR
A D PR
® @
GO OFF
‘ .
AT O
L.
a
Input Message

Figure 4. Finite State Machine Template for Configuration Management Module

1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Pitch Sensor: 2e-6 A/D Passive: 4.14e-6 A/D Active: 4.6e-7 1/O Passive: 6.75¢-6 1/O Active: 7.5¢-7
Power Supply: 3.71e-5 Processor: 3.12¢-5 String Recovery: 3600.0 Mission Time = 3.0 hrs.

TABLE 1. Component Failure Rates (failures/hour) and String Recovery Rate (recoveries/hour)

Exhaustive Analysis: Death State Probability: 4.567e-12 to 4.578e-12 (at 3 component failure level)
Prune State Probability: (0.0) to 3.410e-13
Total: 4.567e-12t0 4.919¢-12
Monte Carlo: 4.57e-12+/-1.68¢-12 to 4.58+/-1.69¢-12 (95% confidence level; 5000 replications)

TABLE 2. System Failure Probability Bounds as Computed by the Two Modes

1. Transitions: (String1)(SinglePowerSupply)(GOODtoFAILED)
(String2)(SinglePowerSupply)(GOODtoFAILED)
(String3)(PitchSensor)({GOODtoFAILED)

Effects: (MajorityVote)

Probability: (1.23721e-14, 1.23877¢-14) Cumulative: (1.23721e-14, 1.23877¢-14)

2. Transitions: (String1)(SinglePowerSupply)(GOODtoFAILED)
(String2)(SinglePowerSupply (GOODtoFAILED)
(String4)(PitchSensor)(GOODtoFAILED)

Effects: (MajorityVote)

Probability: (1.23721e-14, 1.23877¢-14) Cumulative: (2.47442¢-14, 2.47754e-14)

3. Transitions: (String1)(SinglePowerSupply)(GOODtoFAILED)
(String3)(SinglePowerSupply)(GOODtoFAILED)
(String2)(PitchSensor)(GOODtoFAILED)

Effects: (MajorityVote)

Probability: (1.23721e-14, 1.23877¢-14) Cumulative: (3.71163e-14, 3.71631e-14)

4. Transitions: (String1)(SinglePowerSupply)(GOODtoFAILED)
(String3)(SinglePowerSupply (GOODtoFAILED)
(String4)(PitchSensor)(GOODtoFAILED)

Effects: (MajorityVote)

Probability: (1.23721e-14, 1.23877¢-14) Cumulative: (4.94884¢-14, 4.95508¢-14)

5. Transitions: (String1)(SinglePowerSupply)(GOODtoFAILED)
(String4)(SinglePowerSupply)(GOODtoFAILED)
(String2)(PitchSensor)(GOODtoFAILED)

Effects: (MajorityVote)

Probability: (1.23721e-14, 1.23877¢-14) Cumulative: (6.18605¢e-14, 6.19385¢-14)

TABLE 3. Raw Failure Sequences and Their Effects
(Five most probable sequences only are shown)

1. Effect: (MajorityVote) Probability: (4.56664e-12, 4.57816¢-12)
2. Effect: (CoincidentFaultFailure) Probability: (1.00222¢-13, 1.03098¢-13)
3. Effect: (StringExhaustion) Probability: (0.00000e+00, 0.00000e+00)

TABLE 4. Effects and Their Probabilities
(Based on three-component failure limit)

1995 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

81

