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SUMMARY &. CONCLUSIONS 

A new graphical reliability estimation tool, Reliability 
Performance Module (RPM), is described. RPM combines 
the features of a powerful reliability tool, Reliability Estima- 
tion System Testbed @EST), developed at NASA Langley, 
with the convenient graphical modelling and simulation ca- 
pabilities of an off-the-shelf commercial software package, 
Block Oriented Network Simulator (BONeS), from the Alta 
Group of Cadence Design Systems. In order to estimate the 
reliability of a system, the built-in BONeS graphics capabili- 
ties are used to describe the system, and the embedded REST 
execution engine produces a reliability analysis automati- 
cally. An additional benefit of this approach is that a detailed 
failure modes and effects analysis can be derived by using 
the simulation capabilities of the tool. The usage of and out- 
put from FWM is demonstrated with an example system. As 
compared to our current design process, RPM promises to 
reduce overall modelling and analysis time, provide better 
documentation, make trade studies easier, create reusable 
modelling components and subsystems, and provide the inte- 
gration of reliability and timing analysis necessary to guaran- 
tee the safety of critical real-time systems. Future work will 
concentrate on producing a more seamless integration of the 
reliability and timing analyses. Additional planned enhance- 
ments include a distributed (parallel) processing mode, and 
availability and phased-mission analysis capabilities. 

I .  INTRODUCTION 

In this paper, we describe a software tool, called Reliabil- 
ity Performance Module (RPM). RPM represents the latest 
phase in an evolutionary process. It borrows heavily, both in 
philosophy and in actual code, from the Reliability Estima- 
tion System Testbed (REST) tool, developed at NASA Lan- 
gley, and described in Ref. 1. REST, in turn, evolved from 
the ASSIST/SURE tool set (Ref. 2, 3, 4, and 5) also devel- 
oped at NASA Langley, and from the Reliability Model 
Generator (RMG) program, developed at Boeing (Re[. 6). In 
Ref. 1, the authors show how their unique simultaneous 

state-space-generation/state-space-analysis technique to- 
gether with parallel processing combine to reduce dramati- 
cally the execution time of a model with almost 500 compo- 
nents. Also explained is the idea of Failure Mode Effects 
Simulation (FMES), wherein the "local" behavior of system 
components (entered by the modeller) is expanded by the 
program into "global" behavior (computed by the tool), 
which reveals system-wide effects such as system failure. 
The modelling philosophy of REST is based on a modular, 
hierarchical approach that is easily adaptable to graphical in- 
put methods. The next logical step was to provide a graphical 
input method, and the result is described herein. 

As explained below, there is more to the story than simply 
replacing text with pictures. The unique feature of RPM is 
that it is a reliability tool @EST) embedded in the Block 
Oriented Network Simulator (BONeS) environment. BONeS 
is a graphical modelling and simulation tool, originally in- 
tended to model and analyze complex data and communica- 
tion networks. The modelling capabilities of BONeS are 
more flexible and intuitive than a modelling language alone 
when it comes to describing a complex system. 

2. OBJECTIVES ofRPM DEVELOPMENT 

The primary goal in the development of RPM was to pro- 
duce a tool to perform the integrated reliability and timing 
analysis of critical real-time systems. These systems are typi- 
cally designed with a high degree of fault tolerance. The reli- 
ability and timing analyses of such systems are often done 
separately. Ref. 8 contains an excellent discussion of the 
dangers of this practice. 

This consideration was a strong motivator in the decision 
to combine REST and BONeS. The BONeS tool is specifi- 
cally designed for evaluating system performance in terms of 
throughput and delay measures. One could use one of these 
measures, say, end-to-end signal delay, to evaluate whether 
or not the system is still alive, i.e., still performing all safety 
critical functions. Also, one could make use of the the statis- 
tical measures in BONeS, for example, mean response time, 
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to trigger transitions, or again, assess system failure. 
In its current state of development, the RPM tool is not 

capable of combining the reliability and timing models so 
neatly. What one do at this stage is create a BONeS 
model with pure reliability attributes and a separate model 
with pure performance (timing and throughput) attributes to 
do reliability and performance analyses. However, one of the 
main objectives in future work is to achieve a more seamless 
union of these models so we can claim that the two processes 
are truly "integrated." 

Therefore, we shall restrict the discussion in this paper to 
the reliability analysis capabilities of the tool, and postpone 
the discussion of integrated reliability and performance capa- 
bilities to a future paper. 

As for goals having to do solely with reliability analysis, 
our experience with the use of reliability packages has pro- 
duced the following list of things any good tool should do: 

(1) Document the configuration and modelling assump- 
tions for each candidate system architecture. 

(2) Identify dominant failure modes. 
(3) Reveal subtle failure sequences. 
(4) Produce understandable results. 
In addition, usage of the tool should: 
(5 )  Allow the engineer to use simple language, graphical 

icons, etc., to define how the system works, the redundancy 
management operation, and the operational mode fault deg- 
radation strategy, i.e., the plan for continuing operation in 
various degraded states. 

(6) Prompt the engineer for missing definitions and sim- 
plifying assumptions, and document these assumptions as 
part of the analysis output. 

(7) Output failure sequences and their probabilities to a 
specified level of detail so the engineer can assess system ar- 
chitecture strengths and weaknesses, thus making it easier to 
do trade studies. 

Most of these objectives have been met through the devel- 
opment of RPM. This will be explained in more detail be- 
low. 

3. EXHAUSTIVE ANALYSIS & THE MONTE CARLO 

METHOD 

The analysis approaches used in RF'M are derived from 
the REST program. The exhaustive analysis method is a 
variation on the method used in the SURE program. In both 
programs, the overall system failure probability is estimated 
by computing upper and lower bounds on every failure se- 
quence (subject to pruning) and accumulating these to pro- 
duce upper and lower bounds on the overall system failure 
probability. See Ref. 4,5 or 7 for details. 

The difference between SURE and REST lies in the way 
the tasks of state-space generation and state-space analysis 
are performed. The SURE program requires the entire list of 
state-space transitions be generated in advance. The REST 
approach is to perform a depth-first search of all possible 
"paths" (sequences of state-space transitions), computing up- 
per and lower bound estimates on these paths as they are 
generated, and discarding a path when its analysis is com- 
plete. This technique also makes "trimming (or pruning) on 
the fly" possible. Just as with SURE, the overall system fail- 
ure probability is estimated by accumulating the upper and 
lower bounds on all possible paths, subject to pruning. 

The advantage of the REST approach is that the memory 
requirements are much less severe than for SURE. Also, be- 
cause of the empirical fact that, for most systems, after a 
small number of component failures ( 3 - 9 ,  the system is 
either dead or the path probability is insignificant compared 
to the overall system failure probability, the price paid for 
this memory gain in terms of execution time is small. See 
Ref. 7 for details. 

An alternative to the exhaustive analysis approach is to 
use Monte Carlo simulation with importance sampling. The 
basic idea is to choose transition paths at random, using the 
relationship between fast and slow transition rates out of a 
given state to bias the choice towards rare events. The skew 
in the proability distribution thus introduced is accounted for 
later using standard importance sampling techniques. The 
use of this approach within REST is described in Ref. 7. This 
capability is now also part of RPM. 

4 .  PROGRAM OVERVIEW 

The fundamental design concept of RPM has two basic 
elements: the executive and the behavioral model. 

These elements can be thought of as being part of an ex- 
periment, where the executive plays the role of an experi- 
menter attempting to deduce the properties of the behavioral 
model through stimulation and observed reaction. 

From the user's (i.e.. design engineer's) point of view, the 
executive is of absolutely no concern, while the behavioral 
model is entirely the engineer's responsibility to construct. 

Again from the user's point of view, there are two stages 
to the use of RPM. In the fist stage, the behavioral model is 
constructed using the BONeS graphical modelling facilities. 
In the second stage, the user creates a BONeS simulation 
from the model, sets model parameters, e.g. component fail- 
ure rates, and starts the simulation. At this point, the execu- 
tive takes over, stimulates and analyzes the model automati- 
cally, eventually producing output in the form of the overall 
system failure probability, lists of dominant failure se- 
quences and their probabilities, and the probabilities of user- 
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specified system failure events. 

5. THE EXECUTIVE 

After the behavioral model has been constructed and the 
simulation has begun, the operation of RPM at the top level 
appears to be a rapid-fire "conversation" between the execu- 
tive and the behavioral model. The primary messages from 
the executive to the behavioral model are 
1. Load a given state. 

2. Is the current state a death state? 

, 3. Fire all possible transitions and report the resulting new 

The behavioral model responds to (1) by configuring it- 
self in the specified state. This activity may involve side ef- 
fects which cascade through the system. For example, the 
failure of a particular component may result in messages be- 
ing sent which inform other components of this situation. 
Also as a result of this failure, for example, a configuration 
management module may enter a state indicating that a re- 
covery process has begun. In any case, when the "dust has 
settled," the behavioral model informs the executive that it is 
now in the specified state. 

In response to (2), the behavioral model checks each of 
the system failure criteria, which were specified by the engi- 
neer as part of the behavioral model, to see if its current state 
meets any of them. The behavioral model returns a yes or no 
answer to the executive. 

If the answer to (2) is yes, the current state is a death 
state, the executive performs probability calculations which 
update the cumulative upper and lower bounds on the system 
failure probability. This state is then discarded. If there are 
no states left, the program ends and the final results are out- 
put. If the executive has any states left to load, it gives the 
next one to the behavioral model and the whole process be- 
gins anew. 

If the answer to (2) is no, the current state is not a death 
state, the executive asks the behavioral model to fire all pos- 
sible transitions, which were specified by the engineer as 
part of the behavioral model. In response to (3), the behav- 
ioral model fires transitions one by one. Each time a transi- 
tion fires, it may happen that a series of messages are sent or 
other side effects occur. In any case, when this activity 
ceases, the behavioral model reports the resulting state to the 
executive, resets itself to the original state specified by the 
executive, and fires the next transition. This continues until 
there are no more transitions. The executive then presents a 
new state to be loaded, if any are left, and the whole process 
begins anew. 

The executive conducts its search of the transition se- 

states. 

quence space in one of two modes, exhaustive analysis mode 
or Monte Carlo mode. In the exhaustive analysis mode, all 
possible transition sequences are generated, subject to user- 
definable pruning criteria. In the Monte Carlo mode, the 
transition paths are chosen stochastically so as to improve 
the chance of Occurrence of rare events of interest. The re- 
sponse of the behavioral model to a given sequence of transi- 
tions is the same in either case. 

6. THE BEHAVIORAL. MODEL 

As mentioned previously, the behavioral model is a de- 
scription of the relevant characteristics of the system to be 
modelled and analyzed. As discussed in the objectives sec- 
tion, we will focus on those aspects pertaining to the reliabil- 
ity analysis only. To illustrate the important features of the 
behavioral model, the example shown in Figures 1 and 2 will 
be used. (Figures 1-4 are actual BONeS diagrams). The 
block diagram in Fig. 2 is a template for blocks labelled 
String 1 ,  ..., String 4 in Fig. 1. 

There are 32 failable components, divided into 4 strings 
of 8 components apiece. Each string consists of one pitch 
sensor, one a-to-d converter, one i/o card, two processors and 
three power supplies. The components which are not power 
supplies in each string are connected in series. One of the 
power supplies feeds the i/o card, and the other two feed 
both of the processors. The a-to-d converters and the i/o 
cards have three modes: GOOD, BAD (active failure) and 
OFF (passive failure). All other components and power sup- 
plies are either GOOD or FAILED. 

All failures are viewed as being permanent, and failure 
detection is assumed to be perfect. 

The output of each string is either GOOD, BAD or OFF. 
For convenience's sake we will say that the suing b GOOD, 
BAD or OFF, respectively, in these cases. It tums OFF (pas- 
sive failure) if either one of the processors FAILs, both proc- 
essor power supplies FAIL, the a-to-d converter tums OFF, 
the i/o card turns OFF, or the i/o power supply FAILS. A 
string's output is GOOD if there is power to all components 
which are modelled to have power, and all (non-power sup- 
ply) components are GOOD. All other conditions cause the 
string's output to be BAD. 

A string attempts to reconfigure to OFF whenever the 
pitch sensor FAILS, the a-to-d converter goes BAD, or the 
i/o card goes BAD. Once OFF, a string stays OFF. 

There are three system failure conditions. A majority vote 
failure occurs when the number of BAD strings equals or ex- 
ceeds the number of GOOD strings. Nearly coincident fault 
failure occurs whenever two or more strings are simultane- 
ously BAD, i.e., string recovery was unsuccessful. String ex- 
haustion occurs whenever there are no remaining GOOD 
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strings. 

The block labelled String Configuration Management 
Module (SCMM) in Fig. 2 handles the recovery process for 
the string. The SCMM is omniscient, i.e., it is informed im- 
mediately of any change in the state of a component in its 
particular string. This module, then, is an abstraction made 
possible by the assumption of perfect fault detection. 

The behavior of each of the components in the string is 
described using a finite state machine (FSM) paradigm. For 
example, a BONeS representation of the FSM of the A-to-D 
and I/O modules is shown in Fig. 3. Note that there are three 
states, GOOD, FAILED and OFF. 

The FSM transitions from the GOOD state to either the 
FAILED or OFF state via spontaneous transitions, denoted 
by the blocks with lightning bolts. These transitions corre- 
spond to random failures. They are triggered in response to a 
command from the executive to fire transitions. 

Note also that appropriate messages are output whenever 
the FSM enters the FAILED or OFF states. These messages 
are sent to the SCMM. 

The BONeS representation of the SCMM is shown in 
Fig. 4. It has one spontaneous transition, from FAILED to 
OFF. This models the recovery mechansism for the string. In 
addition, this FSM can also transition from the GOOD state 
to the FAILED or OFF state by a stimulated transition, de- 
noted by the blocks which look like light switches. That is, 
the SCMM transitions in response to a message from any of 
the non-power supply components of the string. This transi- 
tion is a direct result of a deterministic stimulus, in this case 
a message, even though the sequence of events leading to 
this message may be initiated by a random event. 

Referring back to Fig. 1 again, the purpose of the blocks 
labelled GOOD Signal Generaior and System Condition Up- 
date is as follows. After a transition fires and the affected 
string has settled into a new state, the GOOD signal genera- 
tor sends out a pulse (labelled GOOD) to all four strings. 
This signal then passes through each of the modules of each 
string, including the SCMM. 

When a signal enters a given module, it comes out 
GOOD, BAD or OFF based on the input value and the state 
of the module. When the signal finally reaches the SCMM in 
a string it is processed as follows. The output signal is OFF if 
the input signal is OFF, regardless of the SCMM state. The 
output signal is also OFF if the SCMM state is OFF, regard- 
less of the input signal. The output signal is GOOD if the in- 
put signal and the state of the SCMM are both GOOD. Oth- 
erwise, the output of the SCMM is BAD. 

The outputs from the four strings are then sent to the Sys- 
tem Condition Update module, which counts the number of 
GOOD and BAD strings. This information can then be used 

by each of the system failure conditions (Majority Vote Fail- 
ure, Coincident Fault Failure, and String Exhaustion) to de- 
cide whether or not the system is still alive. These system 
failure conditions are represented in BONeS by a collection 
of arithmetical and logical blocks which computes some 
function of the system state and then decides whether or not 
a certain test is passed. The system failure conditions are de- 
scribed inside the blocks of Fig. l labelled System Require- 
ments (details not shown). 

7. RESULTS 

Table 1 shows the model parameters, including compo- 
nent failure rates, string recovery rate, and the mission time. 
The overall system failure probability bounds (upper and 
lower) are shown in Table 2. Note that the exhaustive 
analysis bounding interval (4.567e-12, 4.919e-12) is con- 
tained in the corresponding Monte Carlo bounding interval 
(,4.57e-12 - 1.68e-12,4.58 + 1.69e-12) when the (95%) con- 
fidence interval limits are taken into account. These results 
have been repeated using other reliability tools. 

8. FAILURE MODE & EFFECTS SIMULATION 

As mentioned previously, one of the key concepts of the 
RPM design philosophy is that the system to be modelled 
and analyzed is viewed as a behavioral model which can be 
stimulated and observed. This means that it is possible for 
the user to take over the role of the executive block and fail 
selected components in order to observe the effect on the 
system. 

Although this use of the tool helps answer "what if' ques- 
tions, it is of limited value, since a human cannot compete 
with the computer when it comes to performing thousands of 
these operatialns in a reasonable amount of time. 

Therefore, one of the outputs of RPM is a list of the most 
important failure sequences, ordered from highest probability 
to lowest. Such a list, corresponding to the example, is 
shown in Table 3. Because of limited space, only the first 
five event sequences are shown. Upper and lower bounds on 
the probabilities of each event sequence are displayed, as 
well as upper and lower bounds on the cumulative probabil- 
ity of the event sequences up to that point. Also shown is the 
@ect of each failure sequence, which in this case means the 
particular system failure conhtions (Majority Vote Failure, 
Pkarly Coincident Fault Failure, or String Exhaustion) which 
were satisfied by the the occurrence of the given component 
failure sequence. (The first five failure sequences all resulted 
in Majority Vote Failure.) 

Finally, Table 4 shows the probabilities associated with 
each of these system failure conditions. (The event labelled 
String Exhaustion has probability zero since the analysis was 
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arbitrarily terminated after 3 component failures.) 
Notice that the first five failure sequences are essentially 

of the same type, that is, two (single) power supplies fail, 
then a pitch sensor fails. It would be informative to group 
such similar sequences into a single event, then make a list 
of these events in order of decreasing probability, similar to 
the ordering of the raw event sequences in Table 3. In fact 
this is done in RPM, but limited space prohibits display of 
these results. 

Since this is not a traditional F'MEA, but has a similar fla- 
vor, we call it Failure Modes and Effects Simulation 
(FMES). A traditional FMEA would precede the model defi- 
nition. Obviously, a model has already been defined by the 
time this FMES is performed. 

However, it provides much more insight into the strengths 
and weaknesses of the system than a single probability-of- 
failure number can. The FMES feature can be used to succe- 
sively redesign the system by focussing attention on the ele- 
ments of the design which contribute to the most prominent 
failure sequences. Also, one may be alerted to high probabil- 
ity failure sequences which were not considered important 
prior to the analysis. 
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3PM Example Behavioral Model [ 29-Jun-1994 13:4125 J 

QP Pach Sensor Failure Rate PP Sensor Recovery Rate Number of Bad Strings 

UP A to D Good to Failed Rate 
UP AtoDGoodtoOffRate 

UP I and 0 Good to Failed Rate 

UP I and 0 Good to Off Rate 
UP Processor Failure Rate 

UP Power Supply Failure Rate 

Number of Good Strings 

GOOD Signal D 
Generator 

1 
String p 

Malordy 
Vote 

Coincident 
Faun Failure 

String I> 
4 

String 
Exhaustion 

Figure 1. Behavioral Model 

IPM Example Sting 

PII& Sensa uass t P P a d  Sen= Fmre Rate t P  IandOGxdLOFaiedRae t P Processor Fadwe Rae Fa& Messqe 

[ 29Jun-1994 13 41 441 

f P  SWl~aRemvmyRae al Message t~ ludOGxdLOCnRae 

t P  Power supphl F a k e  Rae 

f P  A LO D Gccd 10 Failed Rae 

t P  A l o D W L O M I R a l e  

pJ A IO D C ~ S  

iTJ I and 0 class 

Single Power SJpPlv uass 

Figure 2. Template for "String" 
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9PM Example Finite State Machine [ 21 -Sep-l994 17:40:29 ] 

VM Local State UP Good to Failed Rate ? P  Class Name 1 P Incoming Message 

9 P Outgoing Message UP Good to Off Rate 

-D 

GOOD 
to FAILED 
n o  

GOOD n 
L 

GOOD 
to OFF 
A 0  

FAILED 

r 
C 

OFF 

Message In 

Figure 3. Finite State Machine Template for YO and A/D Modules 

3PM Example Configuration Management [ 21 -Sep-1994 15:00:04] 

VM LocalSlale VP Recovery Rate U P  Class Name Faled Message 

On Message 
7 
0 T - 0 

D 

GOOD 4 

D m I>--D T $ T o I > ~  

FAILED 
to OFF 

FAILED 

-D 

n o  
L A  I 

GOOD 
lo FAILED 
$ ?  

0 4 
GOOD 
lo OFF n o  

OFF 

Figure 4. Finite State Machine Template for Configuration Management Module 
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Pitch Sensor: 2e-6 A/D Passive: 4.14e-6 A/D Active: 4.6e-7 1/0 Passive: 6.75e-6 VO Active: 7.5e-7 
Power Supply: 3.71e-5 Processor: 3.1%-5 String Recovery: 3600.0 Mission Time = 3.0 hrs. 

TABLE 1. Component Failure Rates (failures/hour) and String Recovery Rate (recoveries/hour) 

Exhaustive Analysis: Death State Probability: 4.567e-12 to 4.578e-12 (at 3 component failure level) 
Prune State Probability: (0.0) to 3.410e-13 
Total: 4.567e-12 to 4.919e-12 

Monte Carlo: 4.57e-12+/-1.68e-12 to 4.58+/-1.69e-12 (95% confidence level; 5000 replications) 

TABLE 2. System Failure Probability Bounds as Computed by the Two Modes 

1. Transitions: (Stringl)(SinglePowerSupply)(GOODtoFAILED) 
(String2)(SinglePowerSupply)(GOODtoFAILED) 
(S tring3)(PitchSensor)(GOODtoFAILED) 

Effects: (MajorityVote) 
Probability: (1.23721e-14, 1.23877e-14) Cumulative: (1.23721e- 14, 1.23877e-14) 

2. Transitions: (String l)(SinglePowerSupply)(GOODtoFAILED) 
(String2)(SinglePowerSupply)(GOODtoFAILED) 
(String4)(PitchSensor)(GOODtoFAILED) 

Effects: (MajorityVote) 
Probability: (1.23721e-14, 1.23877e-14) Cumulative: (2.47442e-14,2.47754e-14) 

3. Transitions: (String l)(SinglePowerSupply)(GOODtoFAILED) 
(String3)(SinglePowerS upply)(GOOD toFAILED) 
(String2)(PitchSensor)(GOODtoFAILED) 

Effects: (MajorityVote) 
Probability: (1.23721e-14, 1.23877e-14) Cumulative: (3.71 163e-14,3.71631e-14) 

4. Transitions: (Stringl)(SinglePowerSupply)(GOODtoFAILED) 
(String3)(SinglePowerS upply)(GOODtoFAILED) 
(String4)(PitchSensor)(GOODtoFAILED) 

Effects: (Majority Vote) 
Probability: (1.23721e-14,1.23877e-14) Cumulative: (4.94884e-14,4.95508e-14) 

5. Transitions: (Stringl)(SinglePowerSupply)(GOODtoFAILED) 
(String4)(SinglePowerS upply)(GOODtoFAILED) 
(String2)(PitchSensor)(GOODtoFAJLED) 

Effects: (MajorityVote) 
Probability: (1.23721e-14, 1.23877e-14) Cumulative: (6.1860Se- 14,6.19385e-14) 

TABLE 3. Raw Failure Sequences and Their Effects 
(Five most probable sequences only are shown) 

1. Effect: (MajorityVote) 

2. Effect: (CoincidentFaultFailure) 

3. Effect: (StringExhaustion) 

Probability: (4.56664e-12,4.57816e- 12) 

Probability: (1.00222e-13, 11.03098e-13) 

Probability: (0.00000e+00, Q00000e+00) 

TABLE 4. Effects and Their Probabilities 
(Based on three-component failure limit) 
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